Advertisement

Journal of Materials Science

, Volume 18, Issue 11, pp 3387–3392 | Cite as

Etching of chemically vapour-deposited amorphous Si3N4-C composites in HF solution

  • Takashi Goto
  • Toshio Hirai
Papers

Abstract

Amorphous Si3N4-C[Am.CVD-(Si3N4] composites (C: 0.6 to 6 wt%) were prepared by chemical vapour deposition (CVD) using SiCl4, H2, NH3and C3H8 gases, and their etching characteristics in 47% hydrofluoric acid (HF) solution were investigated in the temperature range of 25 to 50° C. It was found that the etching rate decreases with increasing carbon content. The etching rate of the Am.CVD-(Si3N4-C) composite containing 6 wt% carbon was about 1/40 of the rate for carbon free Am.CVD-Si3N4. The activation energies obtained from the temperature dependence of the etching rates were 11 to 17 kcal mol−1, which increased with increasing carbon content. This paper also presents the study on the characteristics of the etched surfaces as well as the carbon state in the Am.CVD-(Si3N4-C) composites, and finally the possible etching mechanism is discussed.

Keywords

Polymer Activation Energy C3H8 Carbon Content Chemical Vapour Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Deckert, J. Electrochem. Soc. 127 (1980) 2433.Google Scholar
  2. 2.
    T. Hirai and T. Goto, J. Mater. Sci. 16 (1981) 17.Google Scholar
  3. 3.
    F. Itoh, T. Honda, T. Goto, T. Hirai and K. Suzuki, Proceedings of the 8th International Conference on Chemical Vapor Deposition, Gouvieux-Chantilly, France, September 1981, edited by J. M. Blocher Jr, G. E. Vuillard and G. Wahl (Electrochemical Society, Pennington, 1981) p. 277.Google Scholar
  4. 4.
    T. Hirai and T. Goto, J. Mater. Sci. 16 (1981) 2877.Google Scholar
  5. 5.
    T. Goto, S. Hayashi and T. Hirai, Sci. Rep. RITU A29 (1981) 176.Google Scholar
  6. 6.
    B. E. Deal, P. J. Fleming and P. L. Castro, J. Electrochem. Soc. 115 (1968) 300.Google Scholar
  7. 7.
    S. Yoshioka and S. Takayanagi, ibid. 114 (1967) 962.Google Scholar
  8. 8.
    V. Y. Doo, D. R. Kerr and D. R. Nichols, ibid. 115 (1968) 61.Google Scholar
  9. 9.
    E. A. Taft, ibid. 118 (1971) 1341.Google Scholar
  10. 10.
    T. L. Chu, C. H. Lee and G. A. Gruber, ibid. 114 (1967) 717.Google Scholar
  11. 11.
    M. J. Grieco, F. L. Worthing and B. Schwartz, ibid. 115 (1968) 525.Google Scholar
  12. 12.
    C. A. Deckert, ibid. 125 (1978) 320.Google Scholar
  13. 13.
    K. E. Bean, P. S. Gleim and R. L. Yeakley, ibid. 114 (1967) 733.Google Scholar
  14. 14.
    V. Harrap, in “Semiconductor Silicon 1973”, edited by H. R. Huff and R. R. Burgess, The Electrochemical Society Softbound Proceeding Series (The Electrochemical Society, Princeton, New Jersey, 1973) p. 354; Abstract 124, The Electrochemical Society Extended Abstract, Chicago, Illinois, May 13–18, 1973, p. 313.Google Scholar
  15. 15.
    S. Zirinsky and E. A. Irene, Electrochem. Soc. 125 (1978) 320.Google Scholar
  16. 16.
    R. M. Barrer, Trans. Faraday Soc. 35 (1939) 644.Google Scholar
  17. 17.
    A. Bohg, Deutsches Patentamt, Offenlegungsschrift 2557079.Google Scholar

Copyright information

© Chapman and Hall Ltd 1983

Authors and Affiliations

  • Takashi Goto
    • 1
  • Toshio Hirai
    • 1
  1. 1.The Research Institute for Iron, Steel and Other MetalsTohoku UniversitySendaiJapan

Personalised recommendations