Advertisement

Journal of Materials Science

, Volume 18, Issue 11, pp 3311–3322 | Cite as

Hot alkali stable materials with low electrical resistance: a new composite made from porous asbestos and soluble polyphenylene sulphide

  • E. Montoneri
  • L. Giuffré
  • G. Modica
  • M. Gennuso
Papers

Abstract

Dissolving p-polyphenylene sulphide (RytonR) at high concentrations (15 to 25 wt%) in diphenyl sulphide is the key factor to obtain Canadian crysotyle asbestos cardboard (0.055 cm thick) coated with variable amounts (7 to 22 wt%) of the organic polymer. Relative to known coating processes with PPS the use of concentrated polyphenylene sulphide solutions is quite new and yields stabilized asbestos materials whose physical, chemical structure and properties may be modified at will depending on the content of the organic polymer. These products have much higher mechanical strength and chemical stability in boiling 30 to 43 wt% KOH than the plain cardboard. Also due to the low electrical resistance (0.1 Ω cm2 at T⩾ 100° C) in 30 to 43% KOH they appear most suitable for testing in advanced alkaline water electrolysers. The mechanism of stabilization of asbestos by the organic polymer and the structure and chemical—physical behaviour of the plain and coated cardboard are discussed in the light of X-ray, SEM and IR data.

Keywords

Sulphide Chemical Stability Diphenyl Asbestos Coating Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. N. Verizoglu, W. D. Van Vorst and J. H. Kelley (eds), in Proceedings of the 4th WHEC, Pasadena, June 1982, Vol. 1–3 (Pergamon Press, Oxford, 1982).Google Scholar
  2. 2.
    R. Renaud and R. L. Le Roy, Int. J. Hydrogen Energy 7 (1982) 155.Google Scholar
  3. 3.
    H. Hofman, V. Plzak and H. Wendt, in Proceedings of the 4th WHEC, Pasadena, June 1982, Vol. 1, edited by T. N. Verizoglu, W. D. Van Vorst and J. H. Kelley (Pergamon Press, Oxford, 1982) p. 407.Google Scholar
  4. 4.
    C. T. Bowenn, B. F. Henshaw, R. L. Le Roy and R. Renaud, in Informal Proceedings of IEA Annex IV, Pasadena, June 1982, compiled by A. Mezzina (Brookhaven National Laboratory, Upton, New York, 1982).Google Scholar
  5. 5.
    H. W. Hill, Jr and D. G. Brady, “Encyclopedia of Chemical Technology”, Vol. 18, edited by KirkOthmer (J. Wiley and Sons, New York, 1982) p. 793.Google Scholar
  6. 6.
    L. Giuffré, E. Montoneri, G. Modica and E. Tempesti, in Proceedings of the 4th WHEC, Pasadena, June 1982, Vol. 1, edited by T. N. Verizoglu, W. D. Van Vorst and J. H. Kelley (Pergamon Press, Oxford, 1982) p. 319.Google Scholar
  7. 7.
    H. P. Gregor, H. Jacobson, R. C. Shair and D. M. Wetstone, J. Phys. Chem. 61 (1957) 141.Google Scholar
  8. 8.
    G. Modica, L. Giuffré, E. Montoneri, V. Pozzi and E. Tempesti, Int. J. Hydrogen Energy in press.Google Scholar
  9. 9.
    H. H. Smith, “Encyclopedia of Polymer Science and Technology” Vol. 10, edited by H. E. Mark and N. G. Gaylord (Interscience Publ., New York, 1969) p. 653.Google Scholar
  10. 10.
    W. C. Streib, “Encyclopedia of Chemical Technology”, Vol. 3, edited by Kirk-Othmer (J. Wiley and Sons, New York, 1982) p. 267.Google Scholar
  11. 11.
    W. Noll, “Ullmanns Encyklopädie der Technischen Chemie”, Vol. 4, edited by W. Foerst (Urban and Schwarzenberg, München, 1953) p. 40.Google Scholar
  12. 12.
    W. J. Ward III, W. R. Browall and R. M. Salemme, J. Membrane Sci. 1 (1976) 99.Google Scholar
  13. 13.
    W. Pusch and A. Walch, Angew. Chem. Int. Ed. Engl. 21 (1982) 660.Google Scholar
  14. 14.
    W. D. Bascom, J. Phys. Chem. 76 (1972) 3188.Google Scholar
  15. 15.
    O. B. Belseev and L. M. Kiselev, Geol. Razved. Mestorozhd. Tverd. Polez. Iskop. Kaz. (1968) 319.Google Scholar
  16. 16.
    J. Etchepare, Spectroch. Acta 26A (1970) 2147.Google Scholar
  17. 17.
    R. E. Richards and H. W. Thompson, J. Chem. Soc. (1949) 124.Google Scholar
  18. 18.
    Y. Tsunawaki, N. Iwamoto, T. Hattori and A. Mitsuishi, J. Non-cryst. Solids 44 (1981) 369.Google Scholar
  19. 19.
    C. Toprak, J. N. Agar and M. Falk, J. Chem. Soc. Faraday Trans. 14 (1978) 803.Google Scholar
  20. 20.
    A. Zecchina, C. Versino, A. Appiano and G. Occhiena, J. Phys. Chem. 72 (1968) 1471.Google Scholar
  21. 21.
    J. M. Serratosa and W. F. Bradley, ibid. 62 (1958) 1164.Google Scholar
  22. 22.
    R. S. McDonald, ibid. 62 (1958) 1168.Google Scholar
  23. 23.
    Idem, J. Amer. Chem. Soc. 79 (1957) 850.Google Scholar
  24. 24.
    F. K. Scholl, “IR Analysis of Polymers, Resins and Additives. An Atlas”, Vol. 2 (C. Hauser Verlag, München, 1973) spectrum n. 2356.Google Scholar
  25. 25.
    T. Nenner and A. Fahrasmane, in Proceedings of the 4th WHEC, Pasadena, June 1982, Vol. 1, edited by T. N. Verizoglu, W. D. Van Vorst and J. H. Kelley (Pergamon Press, Oxford, 1982) p. 257.Google Scholar

Copyright information

© Chapman and Hall Ltd 1983

Authors and Affiliations

  • E. Montoneri
    • 1
  • L. Giuffré
    • 1
  • G. Modica
    • 1
  • M. Gennuso
    • 1
  1. 1.Dipartimento di Chimica Industriale e Ingegneria Chimica del Politecnico di MilanoMilanoItalia

Personalised recommendations