Journal of Materials Science

, Volume 18, Issue 11, pp 3299–3304 | Cite as

Investigation on grain growth and strain rate sensitivity of a superplastic microduplex steel at 1000°C

  • B. P. Kashyap
  • A. K. Mukherjee
Papers

Abstract

A microduplex stainless steel (25.7 wt% Cr-6.6 wt% Ni) was investigated to examine grain growth during static annealing and superplastic deformation at 1000° C. The grain size at a constant strain rate of 1×10−4 sec−1 increases according to d∼8t0.49 where d is the grain size and t is the time (in min) involved in deformation. Under the present test condition, the contribution of both static (time, tS) and dynamic (strain, ε) annealing appear to be significant and can be expressed by d∞0.19ε0.29. While the exponent of the first term is constant, the exponent of the second term may depend on the strain rate. Strain rate sensitivities were evaluated from differential strain rate tests for different initial grain sizes. Both strain rate sensitivity and grain size were noticed to increase with deformation.

Keywords

Polymer Grain Size Stainless Steel Static Annealing Rate Test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Hornbogen and U. Koster, in “Recrystallization of Metallic Materials”, edited by F. Haessner (Dr. Riederer Verlag GmbH, Stuttgart, 1978) p. 159.Google Scholar
  2. 2.
    G. K. Maltseva, V. I. Puzakov, S. V. Zemski and V. A. Karpelev, Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metall. 3 (1980) 1007.Google Scholar
  3. 3.
    M. A. Clark and T. H. Alden, Acta Metall. 21 (1973) 1195.Google Scholar
  4. 4.
    R. Z. Valiyev and O. Z. Kaybyshev, Fiz. Metal. Metalloved. 41 (1976) 382.Google Scholar
  5. 5.
    G. Rai and N. J. Grant, Met. Trans. 6A (1975) 385.Google Scholar
  6. 6.
    H. W. Hayden, S. Floreen and P. D. Goodell, ibid. 3 (1972) 833.Google Scholar
  7. 7.
    C. I. Smith, B. Norgate and N. Ridley, Met. Sci. 10 (1976) 182.Google Scholar
  8. 8.
    W. A. Backofen, I. R. Turner and D. H. Avery, Trans. Q. Asm 57 (1964) 980.Google Scholar
  9. 9.
    R. J. Lindinger, R. C. Gibson and J. H. Brophy, ibid. 62 (1969) 230.Google Scholar
  10. 10.
    F. Haessner and S. Hofmann, in “Recrystallization of Metallic Materials”, edited by F. Haessner (Dr. Riederer Verlag GmbH, Stuttgart, 1978) p. 63.Google Scholar
  11. 11.
    O. A. Kaybyshev, I. V. Kazachkov and V. M. Rozenberg, Fiz. Metal. Metalloved. 36 (1973) 1235.Google Scholar
  12. 12.
    A. K. Ghosh, in “Deformation of Polycrystals: Mechanisms and Microstructures” (2nd RISø International Symposium on Metallurgy and Materials Science, 1981) p. 277.Google Scholar
  13. 13.
    A. K. Koul and F. B. Pickering, Acta Metall. 30 (1982) 1303.Google Scholar
  14. 14.
    A. K. Ghosh and C. H. Hamilton, Met. Trans. 10A (1979) 699.Google Scholar
  15. 15.
    B. P. Kashyap and A. K. Mukherjee, submitted for publication.Google Scholar
  16. 16.
    C. H. Hamilton and A. K. Ghosh, in “Titanium '80 Science and Technology” (Proceedings, 4th International Conference on Titanium, Kyoto, Japan) (The Metallurgical Society of AIME, Warrendale, PA, 1980) p. 1001.Google Scholar
  17. 17.
    N. E. Paton and C. H. Hamilton, Met. Trans. 10A (1979) 241.Google Scholar
  18. 18.
    J. W. Edington, K. N. Melton and C. P. Cutler, Prog. Mater. Sci. 21 (1976) 61.Google Scholar
  19. 19.
    B. P. Kashyap and G. S. Murty, Met. Trans. 13A (1982) 53.Google Scholar

Copyright information

© Chapman and Hall Ltd 1983

Authors and Affiliations

  • B. P. Kashyap
    • 1
  • A. K. Mukherjee
    • 1
  1. 1.Division of Materials Science, Department of Mechanical EngineeringUniversity of CaliforniaDavisUSA

Personalised recommendations