Journal of Materials Science

, Volume 17, Issue 9, pp 2693–2699 | Cite as

Discussion of the indentation hardness of a glass-ceramic with participate microstructure

  • N. Miyata
  • H. Jinno


On the basis of a theory previously developed by the authors for the indentation hardness of glass matrix, particulate composites, an attempt was made to interpret published hardness data for a ZnO-Al2O3-SiO2 glass-ceramic in which gahnite (ZnAl2O4) crystal particles are dispersed in a glass matrix as a major crystalline phase. The elastic moduli for gahnite were estimated using both the bulk modulus-molar volume relationship and the density-Poisson's ratio relationship, established for oxide crystals. After determining the variation of the matrix Young's modulus with heat-treatment, the variation of the overall hardness with volume fraction of crystal phase as well as the crystal-size effect were discussed. The hardness behaviour of the present glass-ceramic could be interpreted well in terms of the properties and amounts of the constituent phases and the microstructural effects.


Elastic Modulus Crystalline Phase Crystal Phase Particulate Composite Glass Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. McMillan, “Glass-Ceramics”, 2nd edn. (Academic Press, London, 1979) p. 196.Google Scholar
  2. 2.
    Idem, ibid. p. 155.Google Scholar
  3. 3.
    A. J. Stryjak and P. W. McMillan, J. Mater. Sci. 13 (1978) 1275.Google Scholar
  4. 4.
    Idem, ibid. 13 (1978) 1794.Google Scholar
  5. 5.
    R. W. Rice, ibid. 14 (1979) 2768.Google Scholar
  6. 6.
    N. Miyata and H. Jinno, ibid. 17 (1982) 547.Google Scholar
  7. 7.
    D. M. Marsh, Proc. Roy. Soc. (London) A279 (1964) 420.Google Scholar
  8. 8.
    R. M. Christensen, “Mechanics of Composite Materials” (Wiley, New York, 1979) p. 124.Google Scholar
  9. 9.
    R. C. Rossi, J. Amer. Ceram. Soc. 51 (1968) 433.Google Scholar
  10. 10.
    E. H. Kerner, Proc. Phys. Soc. (London) B69 (1956) 808.Google Scholar
  11. 11.
    Z. Hashin, J. Appl. Mech. 29 (1962) 143.Google Scholar
  12. 12.
    D. L. Anderson and O. L. Anderson, J. Geophys. Res. 75 (1970) 3494.Google Scholar
  13. 13.
    O. L. Anderson, E. Schreiber, R. C. Liebermann and N. Soga, Rev. Geophys. 6 (1968) 491.Google Scholar
  14. 14.
    “Handbook of Chemistry and Physics”, 50th edn, edited by R. C. Weast (The Chemical Rubber Co., Cleveland, Ohio, USA, 1969) p. B214.Google Scholar
  15. 15.
    F. S. Galasso, “Structure and Properties of Inorganic Solids” (Pergamon Press, Oxford, 1970) p. 221.Google Scholar
  16. 16.
    E. E. Underwood, “Quantitative Stereology” (Addison Wesley, Reading, Massachusetts, USA, 1970) p. 80.Google Scholar
  17. 17.
    G. M. Smith, J. Amer. Concrete Inst. 27 (1956) 791.Google Scholar
  18. 18.
    D. Weyl, Ber. Deut. Keram. Ges. 36 (1959) 319.Google Scholar
  19. 19.
    J. Selsing, J. Amer. Ceram. Soc. 44 (1961) 419.Google Scholar
  20. 20.
    P. W. McMillan, “Glass-Ceramics”, 2nd edn. (Academic Press, London, 1979) p. 102.Google Scholar
  21. 21.
    P. W. McMillan and A. J. Stryjak, J. Mater. Sci. 14 (1979) 2772.Google Scholar

Copyright information

© Chapman and Hall Ltd 1982

Authors and Affiliations

  • N. Miyata
    • 1
  • H. Jinno
    • 1
  1. 1.Department of Industrial Chemistry, Faculty of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations