Advertisement

Journal of Materials Science

, Volume 18, Issue 1, pp 278–288 | Cite as

Activation energy spectra and relaxation in amorphous materials

  • M. R. J. Gibbs
  • J. E. Evetts
  • J. A. Leake
Papers

Abstract

A theoretical model for relaxation in glassy materials, in particular metallic glasses, based on a spectrum of available processes distributed in activation energy is presented. The model is used to discuss “In t” kinetics, “reversibility” and “crossover” effects which have been observed experimentally. Where direct comparison is possible between the theory and experiment the agreement is good over all these various observed phenomena.

Keywords

Polymer Activation Energy Theoretical Model Energy Spectrum Metallic Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Mizoguchi, H. Kato, N. Akutsu and S. Hatta, Proceedings of the 4th International Conference on Rapidly Quenched Metals, Sendai, 1981, edited by T. Masumoto and K. Suzuki, Vol. 2 (Japan Institute of Metals, 1982) p. 1173.Google Scholar
  2. 2.
    A. L. Greer and F. Spaepen, Ann. New York Acad. Sci. 371 (1981) 218.Google Scholar
  3. 3.
    A. L. Greer and J. A. Leake, J. Non-Cryst. Solids 33 (1979) 291.Google Scholar
  4. 4.
    M. G. Scott, R.W. Cahn, A. Kursumovć, E. Girt and N. B. Njuhovć, Proceedings of the 4th Internatinal Conference on Rapidly Quenched Metals, Sendai, 1981, edited by T. Masumoto and K. Suzuki, Vol. 2 (Japan Institute of Metals, 1982) p. 469.Google Scholar
  5. 5.
    E. Woldt, Diploma, Institut A für Physik der Technischen Universität Carolo-Wilhelmina, Braunschweig (1980).Google Scholar
  6. 6.
    T. Egami, J. Mater. Sci. 13 (1978) 2587.Google Scholar
  7. 7.
    J. R. Cost and J. T. Stanley, Scripta Metall. 15 (1981) 407.Google Scholar
  8. 8.
    W. Chambron and A. Chamberod, Sol. Stat. Commun. 33 (1980) 157.Google Scholar
  9. 9.
    H. S. Chen, J. Appl. Phys. 52 (1981) 1868.Google Scholar
  10. 10.
    L. Boesch, A. Napolitano and P. B. Macedo, J. Amer. Ceram. Soc. 53 (1970) 148.Google Scholar
  11. 11.
    D. Kuhlmann, Z. Physik 124 (1948) 468.Google Scholar
  12. 12.
    A. S. Argon and H. Y. Kuo, J. Non-Cryst. Solids 37 (1980) 241.Google Scholar
  13. 13.
    E. Woldt and H. Neuhäser, J. Phys. C8 41 (1980) 846.Google Scholar
  14. 14.
    W. Primak, Phys. Rev. 100 (1955) 1677.Google Scholar
  15. 15.
    T. Egami, Ann. New York Acad. Sci. 371 (1981) 238.Google Scholar
  16. 16.
    M. R. J. Gibbs and J. E. Evetts, Proceedings of the 4th International Conference on Rapidly Quenched Metals, Sendai, 1981, edited by T. Masumoto and K. Suzuki, Vol. 2, (Japan Institute of Metals, 1982) p. 479.Google Scholar
  17. 17.
    J. A. Leake, M. R. J. Gibbs and J. E. Evetts, ibid, p. 513.Google Scholar
  18. 18.
    K. Bothe and H. Neuhäuser, Scripta Metall. submitted.Google Scholar
  19. 19.
    M. R. J. Gibbs, Proceedings of the Conference on Metallic Glasses Science and Technology, Budapest, 1980, edited by C. Hargitai, I. Bakonyi and T. Kemeny, Vol. 2 (Central Research Institute for Physics, Budapest, 1980) p. 37.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • M. R. J. Gibbs
    • 1
  • J. E. Evetts
    • 1
  • J. A. Leake
    • 1
  1. 1.Department of Metallurgy and Materials ScienceUniversity of CambridgeUK

Personalised recommendations