Skip to main content
Log in

An atomistic model of kinetic crack growth in brittle solids

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A general theory of kinetic crack growth in ideally brittle solids is developed from first principles. In setting up a basic model, emphasis is placed on the essential need to provide for the existence of an energy barrier to activated, non-linear crack motions at the atomic level. The picture is presented of an ideally brittle fracture crack in which sequential bond rupture occurs via the lateral motion of atomic kinks along the crack front. Approximate solutions to the equations of kink motion are then obtained from the discrete, “lattice trapping” theory of Thomson and co-workers. Assuming a classical distribution of kink sites, an expression for the steady-state crack velocity follows. A feature of the present theory is the formulation in terms of the fundamental energy-balance concept of Griffith, with two major advantages: in the first place, standard fracture-mechanics parameters, such as the mechanical-energy-release rate and the fracture-surface energy, enter into the description in a natural manner; in the second, the effect of extrinsic agents on activated kink motion is readily accountable, through a simple modification of the total energy function for the crack system. To illustrate the model, the case of a slowly growing brittle crack in the presence of an interacting ideal gas environment is treated in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. H. Johnson and P. C. Paris, Eng. Fract. Mech. 1 (1968) 3.

    Google Scholar 

  2. S. M. Wiederhorn, “Fracture Mechanics of Ceramics”, Conference Proceedings, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1974) p. 613.

    Google Scholar 

  3. R. Thomson, Ann. Rev. Mat. Sci. 3 (1973) 31.

    Google Scholar 

  4. B. R. Lawn and T. R. Wilshaw, “Fracture of Brittle Solids” (Cambridge University Press, Cambridge, 1975), Chs. 7 and 8.

    Google Scholar 

  5. A. A. Griffith, Phil. Trans. Roy. Soc. Lond. A221 (1920) 163.

    Google Scholar 

  6. E. Orowan, Nature 154 (1944) 341.

    Google Scholar 

  7. R. Thomson, C. Hsieh and V. Rana, J. Appl. Phys. 42 (1971) 3154.

    Google Scholar 

  8. C. Hsieh and R. Thomson, ——ibid 44 (1973) 2051.

    Google Scholar 

  9. J. E. Sinclair and B. R. Lawn, Proc. Roy. Soc. Lond. A329 (1972) 83.

    Google Scholar 

  10. A. Kelly, W. R. Tyson and A. H. Cottrell, Phil. Mag. 15 (1967) 576.

    Google Scholar 

  11. J. R. Rice and R. Thomson, ——ibid 29 (1974) 73.

    Google Scholar 

  12. S. M. Wiederhorn, B. J. Hockey and D. E. Roberts, Phil. Mag. 28 (1973) 783.

    Google Scholar 

  13. E. Orowan, Rep. Prog. Phys. 12 (1949) 48.

    Google Scholar 

  14. G. I. Barenblatt, Adv. Appl. Mech. 7 (1962) 55.

    Google Scholar 

  15. J. R. Rice, J. Appl. Mech. 35 (1968) 379.

    Google Scholar 

  16. J. E. Sinclair, J. Phys. C: Solid State 5 (1972) L271.

    Google Scholar 

  17. Idem, Phil. Mag., in press.

  18. S. M. Wiederhorn, J. Amer. Ceram. Soc. 55 (1972) 81.

    Google Scholar 

  19. S. M. Wiederhorn and H. Johnson, ——ibid 56 (1973) 192.

    Google Scholar 

  20. R. J. Charles and W. B. Hillig, “Mechanical Strength of Glass and Ways of Improving it”, Symposium Proceedings (Union Scientifique Continentale du Verre, Charleroi, Belgium, 1962) p. 511.

    Google Scholar 

  21. S. M. Wiederhorn, “Mechanical and Thermal Properties of Ceramics”, edited by J. B. Wachtman, Jun, (N.B.S. Special Publication 303, 1969) p. 217.

  22. A. R. C. Westwood, J. Mater. Sci. 9 (1974) 1871.

    Google Scholar 

  23. B. R. Lawn, Mat. Sci. Eng. 13 (1974) 277.

    Google Scholar 

  24. R. N. Stevens and R. Dutton, ——ibid 8 (1971) 220.

    Google Scholar 

  25. S. M. Wiederhorn, Int. J. Fract. Mech. 4 (1968) 171.

    Google Scholar 

  26. W. L. Bragg and G. F. Claringbull, “Crystal Structures of Minerals” (Bell, London, 1965) Ch. 6.

    Google Scholar 

  27. R. Thomson and E. Fuller, “Fracture Mechanics of Ceramics”, Conference Proceedings, edited by R. C. Bradt, D. P. H. Hasselmad and F. F. Lange (Plenum, New York, 1974) p. 283.

    Google Scholar 

  28. A. J. Markworth, M. F. Kanninen and P. C. Gehlen, “Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys”, Conference Proceedings, edited by R. W. Staehle et al. (National Association of Corrosion Engineers, Houston, in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

On study leave, from School of Physics, University of New South Wales, Kensington, New South Wales, Australia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawn, B.R. An atomistic model of kinetic crack growth in brittle solids. J Mater Sci 10, 469–480 (1975). https://doi.org/10.1007/BF00543692

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00543692

Keywords

Navigation