Advertisement

Journal of Materials Science

, Volume 26, Issue 16, pp 4468–4476 | Cite as

Notch-sensitivity of non-linear materials

  • P. Purslow
Papers

Abstract

The relationships between breaking stress, σB, and crack length, a, and between breaking strain, εB, and a have been calculated for materials whose stress-strain behaviour is approximated by σ=kε n . The results take the form σB∝ (a) m and εB∝ (a) p, where m=n/(n+1) and p=1/(n+1). For n=1 (the linear case), m=p=1/2. For n>1, m>1/2>p and for n<1, m<1/2<p. Tests on butyl, silicone and latex rubbers as model materials confirm the applicability of the theory. The results imply that for biological materials such as skin where n>1, σB drops off very rapidly with increasing defect size, whereas εB is far less dependent on a. These may be appropriate properties for a material where the degree of extension, rather than the peak loads encountered, is critical to its in vivo performance. For materials where n<1, breaking stress is far less sensitive to crack length than fracture strain, which may be more appropriate properties for applications in which applied stress, but not strain, is critical.

Keywords

Polymer Silicone Rubber Butyl Crack Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. E. Gordon, in “Structures” (Penguin, Harmonsworth, 1978).Google Scholar
  2. 2.
    Idem., in “The Mechanical Properties of Biological Materials”, edited by J. F. V. Vincent and J. D. Currey (Cambridge University Press, 1980).Google Scholar
  3. 3.
    P. P. Purslow, J. Mater. Sci. 18 (1983) 3591.Google Scholar
  4. 4.
    Idem., J. Biomech. 16 (1983) 947.Google Scholar
  5. 5.
    E. Smith, J. Mater. Sci. Lett. 4 (1985) 338.Google Scholar
  6. 6.
    Idem., J. Mater. Sci. 22 (1987) 867.Google Scholar
  7. 7.
    Idem. E. Smith, Mater. Sci. Engng A112 (1989) 25.Google Scholar
  8. 8.
    K. Kendall and K. N. G. Fuller, J. Phys. D. Appl. Phys. 20 (1987) 1596.Google Scholar
  9. 9.
    Y. W. Mai and A. G. Atkins, ibid. 22 (1989) 48.Google Scholar
  10. 10.
    H. R. Elden, Collagen Currents 7 (1968) 228.Google Scholar
  11. 11.
    A. G. Atkins and Y. W. Mai, “Plastic and Elastic Fracture” (Ellis Horwood, Chichester, 1985) pp. 80, 154.Google Scholar
  12. 12.
    P. P. Purslow, PhD thesis, University of Reading (1980).Google Scholar
  13. 13.
    Idem., J. Phys. D. Appl Phys. 22 (1989) 854.Google Scholar
  14. 14.
    A. Kelly, in “Strong solids” (Clarendon Press, Oxford, 1966) p. 159.Google Scholar
  15. 15.
    J. R. Rice and G. F. Rosengren, J. Mech. Phys. Solids 16 (1968) 1.Google Scholar
  16. 16.
    J. W. Hutchinson, ibid. 16 (1968) 13.Google Scholar
  17. 17.
    J. G. Williams, in “Fracture mechanics of polymers” (Ellis Horwood, Chichester, 1984) p. 51.Google Scholar
  18. 18.
    L. Mullins and A. G. Thomas, in “The Chemistry and Physics of Rubber-like Substances”, edited by L. Bateman (Maclaren, London) p. 154.Google Scholar
  19. 19.
    E. H. Andrews, J. Appl. Phys. 32 (1961) 542.Google Scholar
  20. 20.
    W. G. Cobbett and A. G. Ward, Rheol. Acta 7 (1968) 217.Google Scholar
  21. 21.
    A. Bigi, A. Ripamonti, N. Roveri, G. Jeronimidis and P. P. Purslow, J. Mater. Sci. 16 (1981) 2557.Google Scholar
  22. 22.
    N. Roveri, A. Ripamonti, C. Pulga, G. Jeronimidis, P. P. Purslow, D. Volpin and L. Gotte, Makromol. Chem. 181 (1980) 1999.Google Scholar
  23. 23.
    P. P. Purslow, A. Bigi, A. Ripamonti and N. Roveri, Int. J. Biol. Macromol. 6 (1984) 21.Google Scholar
  24. 24.
    R. S. Rivlin and A. G. Thomas, J. Polym. Sci. 10 (1953) 291.Google Scholar
  25. 25.
    G. J. Lake, Malaysian Rubber Producers Research Association Reprint No. 0207.Google Scholar
  26. 26.
    H. W. Greensmith, J. Appl. Polym. Sci. 7 (1963) 993.Google Scholar
  27. 27.
    J. D. Currey, Clin. Orthop. 73 (1970) 210.Google Scholar
  28. 28.
    Idem., in “The Mechanical Properties of Biological Materials”, edited by J. F. V. Vincent and J. D. Currey (Cambridge University Press, 1980).Google Scholar
  29. 29.
    Idem., personal communication.Google Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • P. Purslow
    • 1
  1. 1.Muscle Biology DepartmentAFHC Institute of Food ResearchLangfordUK

Personalised recommendations