Advertisement

Journal of Materials Science

, Volume 26, Issue 16, pp 4461–4467 | Cite as

Diffusional cubic-to-tetragonal phase transformation and microstructural evolution in ZrO2-Y2O3 ceramics

  • Y. Zhou
  • Q. L. Ge
  • T. C. Lei
  • T. Sakuma
Papers

Abstract

The diffusional cubic-to-tetragonal (c-t) phase transformation and microstructural evolution were studied on ZrO2-Y2O3 ceramics with 4 to 6 mol% Y2O3 annealed in the two phase (c + t) region for longer periods of time. It was shown that in early stages of annealing a “tweed” structure of t-ZrO2 was developed. With increasing annealing time this tweed structure becomes coarser and changes into internally twinned “colony” structure. The “colonies” can grow to large sizes but their twin-spacing remains almost constant. The effect of increasing annealing temperature was shown to be more obvious than prolonging annealing time in the transition from tweed to colony structure. The mechanism of the diffusional c-t transformation was discussed.

Keywords

Polymer Phase Transformation Y2O3 Annealing Time Microstructural Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Sakuma, Y. Yoshizawa and H. Suto, J. Mater. Sci. 20 (1985) 2399–2470.Google Scholar
  2. 2.
    K. Tsukuma, Y. Kubota and T. Tsukitate, in “Advances in Ceramics”, Vol. 12, Science and Technology of Zirconia II, edited by N. Claussen, M. Rühle and A. H. Heuer (American Ceramic Society, Columbus OH, 1984) pp. 382–90.Google Scholar
  3. 3.
    E. Ryshkewith, “Oxide Ceramics” (Academic Press, New York, 1960) p. 350.Google Scholar
  4. 4.
    A. H. Heuer and M. Rühle, in “Advances in Ceramics”, Vol. 12, op. cit. [2], pp. 1–13.Google Scholar
  5. 5.
    C. Gavie, R. H. Hannink and R. T. Poscoe, Nature, Lond. 258 (5537) (1975) 703–704.Google Scholar
  6. 6.
    D. L. Porter and A. H. Heuer, J. Amer. Ceram. Soc. 62 (1979) 298–305.Google Scholar
  7. 7.
    J. M. Marder, T. E. Mitchell and A. H. Heuer, Acta Metall. 31 (1983) 387–95.Google Scholar
  8. 8.
    S. C. Farmer, T. E. Mitchell and A. H. Heuer, in “Advances in Ceramics”, Vol. 12, op. cit. [2], pp. 152–63.Google Scholar
  9. 9.
    T. Yagi, A. Saiki, N. Ishizawa, N. Mizutani and M. Kato, J. Amer. Ceram. Soc. 69 (1) (1986) C3 and C4.Google Scholar
  10. 10.
    Y. Zhou, Ph.D. Thesis, Harbin Institute of Technology, Harbin, People's Republic of China (1989).Google Scholar
  11. 11.
    R. Chaim, M. Rühle and A. H. Heuer, J. Amer. Ceram. Soc. 68 (1985) 427–31.Google Scholar
  12. 12.
    N. Ishizawa, A. Saiki, T. Yagi, N. Mizutani and M. Kato, J. Amer. Ceram. Soc. 69 (2) (1986) C18-C20.Google Scholar
  13. 13.
    A. H. Heuer, R. Chaim and V. Lanteri, ‘Phase Transformation and Microstructural Characterization of Alloys in the Y2O3-ZrO2 System’, a review, by private communication.Google Scholar
  14. 14.
    V. Lanteri, R. Chaim and A. H. Heuer, J. Amer. Ceram. Soc. 69 (10) (1986) C258-C261.Google Scholar
  15. 15.
    T. Sakuma, J. Mater. Sci. 22 (1987) 4470–75.Google Scholar
  16. 16.
    T. Sakuma, Y. Yoshizawa and H. Suto, ibid. 21 (1986) 1436–40.Google Scholar
  17. 17.
    H. Scott, ibid. 10 (1975) 1527–35.Google Scholar
  18. 18.
    V. Lanteri, A. H. Heuer and T. E. Mitchell, in “Advanced in Ceramics”, Vol. 12, op. cit. [2], pp. 118–30.Google Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • Y. Zhou
    • 1
  • Q. L. Ge
    • 1
  • T. C. Lei
    • 1
  • T. Sakuma
    • 2
  1. 1.Department of Metals and TechnologyHarbin Institute of TechnologyHarbinPeople's Republic of China
  2. 2.Department of Materials Science, Faculty of EngineeringUniversity of TokyoTokyoJapan

Personalised recommendations