Journal of Materials Science

, Volume 26, Issue 16, pp 4344–4350 | Cite as

Influence of surface modification of porous glasses on their surface free energy

  • L. Hołysz
  • A. L. Dawidowicz
  • E. Chibowski
  • W. Stefaniak
Papers

Abstract

Investigations of zeta-potential changes of initial and thermally treated controlled-porosity glasses (CPGs), whose surfaces were covered with different amounts of n-octane and/or nitromethane, are presented. The dispersive (γ s d ) and non-dispersive (γ s n ) components of the surface free energy were then calculated using the relationships obtained. γ s d was found to be practically independent of the treatment time (a small increase in the range of 4 mJ m−2 can be seen), but a considerable decrease in γ s n was observed (from 76.95 to 27.2 4 mJ m−2). In the case of CPG modified with γ-aminopropyltriethoxysilane an increased hydrophobic character of the surface was found. This was reflected in increased γ s d and decreased γ s n values.

Keywords

Polymer Free Energy Treatment Time Surface Modification Surface Free Energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. M. Fowkes, Ind. Eng. 56 (1964) 40.Google Scholar
  2. 2.
    S. Wu, in “Polymer Blends”, Vol. 1, edited by D. R. Paul and S. Newman (Academic, New York, 1978) p. 243.Google Scholar
  3. 3.
    K. L. Mittal, in “Adhesion Science and Technology”, Vol. 9A, edited by L. H. Lee (Plenum, New York, 1976) p. 129.Google Scholar
  4. 4.
    B. Jańczuk, T. Bialopiotrowicz, E. Chibowski, A. L. Dawidowicz and A. Kliszcz, J. Mater. Sci 25 (1990) 1682.Google Scholar
  5. 5.
    F. Janowski and W. Heyer, “Poröse Glässer” (VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1982).Google Scholar
  6. 6.
    W. Haller, J. Chem. Phys. 42 (1965) 686.Google Scholar
  7. 7.
    A. L. Dawidowicz, A. Waksmundzki and A. Derylo, Chem. Anal. 24 (1979) 811.Google Scholar
  8. 8.
    M. B. Volf, “Technical Glasses”, Part 10 (Pitman, London, 1961).Google Scholar
  9. 9.
    A. L. Dawidowicz, J. Matusewicz and J. Wysocka-Lisek, Talanta 36 (1989) 581.Google Scholar
  10. 10.
    A. L. Dawidowicz and I. Choma, Mater. Chem. Phys. 8 (1983) 323.Google Scholar
  11. 11.
    M. I. D. Low and N. Ramasubramanian, J. Phys. Chem. 70 (1966) 2740.Google Scholar
  12. 12.
    V. M. Kirutenko, A. V. Kiseleu, V. I. Lygin and K. L. Scepalin, Kinetyka i Kataliz 15 (1974) 1584.Google Scholar
  13. 13.
    J. Rogalski and A. L. Dawidowicz, Acta Biotechnol. 9 (1988) 275.Google Scholar
  14. 14.
    R. A. Messing and H. H. Weetall, US Patent 3519538 (1968).Google Scholar
  15. 15.
    E. Chibowski and A. Waksmundzki, J. Coll. Interface Sci. 64 (1978) 380.Google Scholar
  16. 16.
    Idem, ibid. 66 (1978) 213.Google Scholar
  17. 17.
    E. Chibowski and L. Hołysz, ibid. 77 (1980) 37.Google Scholar
  18. 18.
    Idem, ibid. 81 (1981) 81.Google Scholar
  19. 19.
    Idem, ibid. 112 (1986) 15.Google Scholar
  20. 20.
    Idem, Fuel 68 (1989) 1281.Google Scholar
  21. 21.
    R. J. Hunter, in “Zeta Potential in Colloid Science”, edited by R. H. Ottewil and R. L. Rowell (Academic, London, 1981) p. 125.Google Scholar
  22. 22.
    E. M. Nelsen and F. T. Eggertsen, Anal. Chem. 30 (1958) 1387.Google Scholar
  23. 23.
    A. Gorgol, J. Wójcik, J. Gawdzik, Z. Suprynowicz and A. Waksmundzki, Polish Patent PRL 173237 (1974).Google Scholar
  24. 24.
    A. L. Dawidowicz, Mater. Chem. Phys. 11 (1984) 503.Google Scholar
  25. 25.
    S. Pikus and A. L. Dawidowicz, Appl. Surf. Sci. 23 (1985) 274.Google Scholar
  26. 26.
    A. L. Dawidowicz and P. Staszczuk, J. Therm. Anal. 30 (1985) 793.Google Scholar
  27. 27.
    F. M. Fowkes, J. Coll. Interface Sci. 28 (1968) 493.Google Scholar
  28. 28.
    A. L. McClellan and A. L. Harnsberger, ibid. 23 (1967) 575.Google Scholar
  29. 29.
    A. W. Adamson, in “Physical Chemistry of Surfaces” (Interscience, New York, 1982) p. 124.Google Scholar
  30. 30.
    B. R. Malcolm, in “Progress in Surface and Membrane Science”, Vol. 7, edited by J. F. Danielli, M. D. Rosenberg and D. A. Cadenhead (Academic, New York, 1973) p. 200.Google Scholar
  31. 31.
    P. Staszczuk, B. Jańczuk and E. Chibowski, Mater. Chem. Phys. 12 (1985) 469.Google Scholar
  32. 32.
    E. Chibowski, B. Biliński, A. Waksmundzki and W. Wójcik, J. Coll. Interface Sci. 86 (1982) 559.Google Scholar
  33. 33.
    E. Chibowski, L. Hołysz, G. A. M. Kip, A. van Silfhout and H. J. Busscher, ibid. 132 (1989) 54.Google Scholar
  34. 34.
    B. Biliński, W. Wójcik and A. L. Dawidowicz, Appl. Surface Sci. 47 (1991) 99.Google Scholar
  35. 35.
    B. Jańczuk, Przem. Chem. 61 (1982) 468.Google Scholar
  36. 36.
    E. Chibowski and P. Staszczuk, Clays & Clay Miner. 36 (1988) 455.Google Scholar
  37. 37.
    A. L. Dawidowicz, Mater. Chem. Phys. 11 (1984) 503.Google Scholar
  38. 38.
    A. L. Dawidowicz and S. Pikus, J. Therm. Anal. 32 (1987) 409.Google Scholar
  39. 39.
    E. Chibowski and L. Hołysz, J. Coll. Interface Sci. 127 (1989) 377.Google Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • L. Hołysz
    • 1
  • A. L. Dawidowicz
    • 2
  • E. Chibowski
    • 1
  • W. Stefaniak
    • 1
  1. 1.Department of Physical Chemistry, Faculty of ChemistryMaria Curie-Skłodowska UniversityLublinPoland
  2. 2.Department of Chemical Physics, Faculty of ChemistryMaria Curie-Skłodowska UniversityLublinPoland

Personalised recommendations