Skip to main content
Log in

Self-compensation in tantalum-doped TiO2

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The reversible change of oxygen content observed by gravimetric measurements on tantalum-doped rutile (TiO2) between specified states of oxidation and reduction is proportional to the dopant concentration. These measurements indicate that donordopants are ionically compensated by additional oxygen uptake in the oxidized state. The range of this reversible change in oxygen stoichiometry is up to more than an order of magnitude larger than the oxygen non-stoichiometry of the undoped TiO2. Self-compensation has been measured in TiO2 with up to 10 at% Ta+5 and a single-phase region from TaO +50.1 Ti +30.1 Ti +40.8 O2 to Ta +50.1 Ti +40.9 O2.05 has been confirmed. The gravimetric measurements can be explained by either the creation of metal-deficit point defects (self-compensation) or a model involving a shear structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kofstad, J. Less-Commom Met. 13 (1967) 635.

    Google Scholar 

  2. L. N. Shen, O. W. Johnson, W. D. Ohlsen and J. W. Deford, Phys. Rev. B10 (1974) 1823.

    Google Scholar 

  3. C. Picard and P. Gerdanian, J. Sol. Stat. Chem., 14 (1975) 66.

    Google Scholar 

  4. P. H. Odier, J. F. Baumard, D. Panis and A. M. Anthony, ibid. 12 (1975) 324.

    Google Scholar 

  5. P. Kofstad' J. Phys. Chem. Sol. 23 (1962) 1579.

    Google Scholar 

  6. K. S. Forland, Acta. Chem. Scand. 18 (1964) 1267.

    Google Scholar 

  7. J. B. Moser, R. N. Blumenthal and D. H. Whitmore, J. Amer. Ceram. Soc. 48 (1965) 384.

    Google Scholar 

  8. D. S. Tannhauser, Sol. Stat Comm. 1 (1963) 223.

    Google Scholar 

  9. R. N. Blumenthal, J. Coburn, J. Baukus and W. M. Whitmore, J. Phys. Chem. Sol. 27 (1966) 643.

    Google Scholar 

  10. Y. Yahia, Phys. Rev. 130 (1963) 1711.

    Google Scholar 

  11. J. F. Marucco, J. Gautron and P. Lemasson, J. Phys. Chem. Sol. 42 (1981) 363.

    Google Scholar 

  12. H. P. R. Frederikse, J. Appl. Phys. 32 (1961) 2211.

    Google Scholar 

  13. P. F. Chester, ibid. 32 (1961) 2233.

    Google Scholar 

  14. S. Andersson, Acta. Chem. Scand. 11 (1957) 1641.

    Google Scholar 

  15. B. G. Hyde and L. A. Bursill, in “The Chemistry of Extended Defects in Non-Metallic Solids” edited by L. Eyring and M. O'Keefe (North-Holland, Amsterdam, 1970) p. 347.

    Google Scholar 

  16. J. S. Anderson and R. J. D. Tilley, J. Sol. Stat. Chem. 2 (1970) 472.

    Google Scholar 

  17. L. A. Bursill and B. G. Hyde, Phil. Mag. 23 (1970) 3.

    Google Scholar 

  18. J. S. Anderson, National Bureau of Standards Publication Number 364 (U.S. Government Printing Office, Washington, D.C., 1972) p. 295.

    Google Scholar 

  19. R. M. Gibb and J. S. Anderson, J. Sol. Stat. Chem. 4 (1972) 379.

    Google Scholar 

  20. Idem, ibid. 5 (1972) 212.

    Google Scholar 

  21. R. N. Blumenthal and D. H. Whitmore, J. Electrochem. Soc. 110 (1963) 92.

    Google Scholar 

  22. J. S. Anderson and A. S. Khan, J. Less-Common Met. 22 (1970) 219.

    Google Scholar 

  23. S. Zador, Ph.D. thesis, University of London (1969).

  24. N. G. Eror, J. Sol. Stat. Chem. 38 (1981) 281.

    Google Scholar 

  25. E. J. W. Verwey, P. W. Haaijman, F. C. Romeijn and G. W. Oosterhout, Philips. Res. Rept. 5 (1950) 173.

    Google Scholar 

  26. F. A. Kroger and H. J. Vink, in “Solid State Physics” Vol. III, edited by F. Seitz and D. Turnbull (Academic Press, New York, 1956) p. 307.

    Google Scholar 

  27. R. F. Brebrick, “Progress in Solid State Chemistry” Vol. III (Pergamon Press, Oxford and New York, 1966) p. 213.

    Google Scholar 

  28. G. Mandel, Phys. Rev. A134 (1964) 1073.

    Google Scholar 

  29. Idem, ibid. A136 (1964) 826.

    Google Scholar 

  30. F. A. Kroger, in “Physical Chemistry: An Advanced Treatise” Vol. X, edited by H. Eyring (Academic Press, New York and London, 1970) p. 229.

    Google Scholar 

  31. N. G. Eror and D. M. Smyth, in “The Chemistry of Extended Defects in Non-Metallic Solids” edited by L. Eyring and M. O'Keefe (North-Holland, Amsterdam, 1970) p. 62.

    Google Scholar 

  32. J. L. Waring and R. S. Roth, J. Res. Natl. Bur. Std. 72A (1968) 177.

    Google Scholar 

  33. M. Pechini, U.S. Patent Number, 3,330,697, July 11, 1967.

  34. U. Balachandran and N. G. Eror, J. Sol. Stat. Chem. 39 (1981) 351.

    Google Scholar 

  35. J. P. Coughlin, National Bureau of Standards Bullitin Number 542 (U.S. Government Printing Office, Washington, D.C., 1954).

    Google Scholar 

  36. V. R. Porter, Ph.D. thesis, The Pennsylvania State University (1965).

  37. H. Reiss, C. S. Fuller and A. J. Pietruszkiewicz, J. Chem. Phys. 25 (1956) 650.

    Google Scholar 

  38. U. Balachandran and N. G. Eror, J. Sol. Stat. Chem. 40 (1981) 85.

    Google Scholar 

  39. S. Andersson and J. Galy, ibid. 1 (1970) 576.

    Google Scholar 

  40. A. Magneli, Arkiv. Kemi. 1 (1950) 513.

    Google Scholar 

  41. A. D. Wadsley, Acta Cryst. 14 (1961) 660.

    Google Scholar 

  42. J. S. Anderson, “Advances in Chemistry” Vol. 39 (American Chemical Society, Washington, D.C., 1963) p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balachandran, U., Eror, N.G. Self-compensation in tantalum-doped TiO2 . J Mater Sci 17, 1207–1212 (1982). https://doi.org/10.1007/BF00543542

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00543542

Keywords

Navigation