Skip to main content
Log in

Effects of anelastic deformation on high-temperature stress relaxation of polycrystalline MgO and Al2O3

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-temperature (1160 to 1450‡ C) deformation of dense polycrystalline (10 to 90 Μm) Al2O3 and MgO doped with Fe (up to 2.65 cation %) was studied by stress relaxation, dead-load creep and creep recovery. In some cases, all three deformation tests were conducted on a single specimen. A comparison of strain rate-stress data calculated from both stress relaxation and dead-load creep experiments revealed discrepancies in both the magnitude of the strain rates and the dependence between the strain rate and stress. These differences were attributed to the existence of anelastic deformation effects. The correction of stress relaxation data in the low stress regime for linear anelasticity led to strain rate-stress data in reasonably close agreement with results obtained from dead-load creep tests conducted in the viscous creep regime. Creep recovery experiments indicated that anelastic deformation in these ceramic materials was relatively insensitive to changes in temperature and grain size over the range of variables studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. K. Shetty and R. S. Gordon, J. Mater. Sci. 14 (1979) 2163.

    Google Scholar 

  2. A. M. Freudenthal, ASTM Proc. 60 (1960) 986.

    Google Scholar 

  3. E. W. Hart, Nucl. Eng. Design 46 (1978) 179.

    Google Scholar 

  4. Idem, in “Stress Relaxation Testing”, ASTM STP 676, edited by A. Fox, (American Society for the Testing of Metals, Philadelphia, 1979) p. 5.

    Google Scholar 

  5. J. T. A. Roberts, Acta Metal. 22 (1974) 873.

    Google Scholar 

  6. R. T. Tremper, R. A. Giddings, J. D. Hodge, and R. S. Gordon, J. Amer. Ceram. Soc. 57 (1974) 421.

    Google Scholar 

  7. P. A. Lessing and R. S. Gordon, J. Mater. Sci. 12 (1977) 2291.

    Google Scholar 

  8. Y. Ikuma, Ph. D. Thesis, University of Utah (1980).

  9. J. D. Hodge, P. A. Lessing and R. S. Gordon, J. Mater. Sci. 12 (1977) 1598.

    Google Scholar 

  10. P. E. Bohaboy, R. R. Asamoto and A. E. Conti, GEAP-10054 (1969).

  11. E. W. Hart and H. D. Solomon, Acta Metal. 21 (1973) 295.

    Google Scholar 

  12. W. H. Gitzen, “Alumina as a Ceramic Material” (American Ceramic Society, Columbus, Ohio, 1970) p. 53.

    Google Scholar 

  13. D. H. Chung and W. G. Lawrence, J. Amer. Ceram. Soc. 47 (1964) 448.

    Google Scholar 

  14. G. J. Lloyd and R. J. McElroy, Acta Metal. 22 (1974) 339.

    Google Scholar 

  15. W. R. Cannon and O. D. Sherby, J. Amer. Ceram. Soc. 56 (1973) 157.

    Google Scholar 

  16. S. I. Warshaw and F. H. Norton, ibid. 45 (1962) 479.

    Google Scholar 

  17. J. H. Hensler and G. V. Cullen, ibid. 51 (1968) 557.

    Google Scholar 

  18. G. R. Terwillinger, H. K. Bowen and R. S. Gordon, ibid. 53 (1970) 241.

    Google Scholar 

  19. T. G. Langdon and J. A. Pask, Acta Metal. 18 (1970) 505.

    Google Scholar 

  20. R. S. Gordon and G. R. Terwillinger, J. Amer. Ceram. Soc. 55 (1972) 450.

    Google Scholar 

  21. Y. Oishi and W. D. Kingery, J. Chem. Phys. 32 (1960) 480.

    Google Scholar 

  22. A. E. Paladino and W. D. Kingery, ibid. 37 (1962) 957.

    Google Scholar 

  23. Y. Oishi and W. D. Kingery, ibid. 33 (1960) 905.

    Google Scholar 

  24. R. Linder and G. D. Parfitt, ibid. 26 (1957) 182.

    Google Scholar 

  25. B. C. Harding and D. M. Price, Phil. Mag. 26 (1972) 253.

    Google Scholar 

  26. B. J. Wuensch and T. Vasilos, J. Chem. Phys. 36 (1962) 2917.

    Google Scholar 

  27. P. D. Southgate, J. Phys. Chem. Sol. 27 (1966) 1263.

    Google Scholar 

  28. J. E. Turnbaugh and F. H. Norton, J. Amer. Ceram Soc. 51 (1968) 344.

    Google Scholar 

  29. C. Zener, “Elasticity and Anelasticity of Metals” (University of Chicago Press, Chicago, 1948) pp. 147–159.

    Google Scholar 

  30. W. N. Findley, J. S. Lai and K. Onaran, “Creep and Relaxation of Nonlinear Viscoelastic Materials”, (North-Holland Publishing, Amsterdam, New York and Oxford, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikuma, Y., Gordon, R.S. Effects of anelastic deformation on high-temperature stress relaxation of polycrystalline MgO and Al2O3 . J Mater Sci 17, 1066–1078 (1982). https://doi.org/10.1007/BF00543526

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00543526

Keywords

Navigation