Advertisement

Marine Biology

, Volume 103, Issue 2, pp 241–251 | Cite as

Mechanisms for the uptake of inorganic carbon by two species of symbiont-bearing foraminifera

  • B. ter Kuile
  • J. Erez
  • E. Padan
Article

Abstract

The mechanisms for uptake of inorganic carbon (Ci) for photosynthesis and calcification of a perforate foraminifer, Amphistegina lobifera Larsen, and an imperforate species, Amphisorus hemprichii Ehrenberg, from the Gulf of Eilat, Red Sea were studied in 1986–1987 using 14C tracer techniques. Total Ci uptake of A. lobifera and photosynthetic carbon uptake of A. hemprichii fit the Hill-Whittingham equation that describes the overall rate of enzymatic reactions that are provided with their substrate through a diffusion barrier. This suggests that diffusion is the rate limiting step for total Ci uptake in A. lobifera. Photosynthesis by the isolated symbionts and uptake of CO32- for calcification obey Michaelis-Menten kinetics indicating that enzymatic reactions determine the rate of the separate processes. Both photosynthesis and calcification can be inhibited without affecting each other. Calcification rates in A. lobifera were optimal at Ca levels around normal seawater concentration and were sensitive to inhibitors of respiratory adenosine triphosphate (ATP) generation and Ca-ATP-ase. This indicates that Ca uptake is also active. Calcification rates of A. hemprichii increased linearly as a function of external Ci concentration over the entire experimental range (0 to 4 mM Ci). In contrast, photosynthetic rates showed Hill-Whittingham type kinetics. The dependence of calcification on the CO32- concentration was also linear, suggesting that its diffusion is the rate limiting step for calcification in A. hemprichii. Increasing Ca concentrations yielded higher calcification rates over the entire range measured (0 to 40 mM Ca). Calcification in A. hemprichii was less sensitive to inhibitors of ATP generation than in A. lobifera, suggesting that in A. hemprichii energy supply is less important for this process.

Keywords

Photosynthesis Foraminifera CO32 Inorganic Carbon Adenosine Triphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Anderson, O. R., Be', A. W. H. (1978). Recent advantages in foraminifera fine structure research. In: Hedley, R. H., Adams, C. G. (eds.). Foraminifera 3: 121–202Google Scholar
  2. Borowitzka, M. A. (1977). Algal calciification. Oceangr. mar. Biol. A. Rev. 15: 189–223Google Scholar
  3. Borowitzka, M. A. (1981). Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and A. foliacea. Mar. Biol. 62: 17–23Google Scholar
  4. Borowitzka, M. A. (1982a). Morphological and cytological aspects of algal calcification. Int. Rev. Cyt. 74: 127–162Google Scholar
  5. Borowitzka, M. A. (1982b). Mechanisms in algal calcification. Prog. Phycol. Res. 1: 137–177Google Scholar
  6. Borowitzka, M. A. (1987). Calcification in algae: mechanisms and the role of metabolism. CRC critical Rev. Pl. Sciences 6: 1–45Google Scholar
  7. Borowitzka, M. A., Larkum, A. W. D. (1976). Calcification in the green alga Halimeda III The sources of inorganic carbon for photosynthesis and calcification and a model of the mechanism of calcification. J. exp. Bot. 279(100): 879–893Google Scholar
  8. Buddemeier, R. W., Kinzie, R. A. (1976). Coral growth. Oceangr. mar. Biol. A. Rev. 14: 183–225Google Scholar
  9. Burris, J. E., Porter, J. W., Laing, W. A. (1983). Effects of carbon dioxide concentration on coral photosynthesis. Mar. Biol. 75: 113–116Google Scholar
  10. Erez, J. (1978). Vital effect on stable-isotope composition seen in foraminifera and coral skeletons. Nature, Lond. 273: 199–202Google Scholar
  11. Erez, J. (1983). Calcification rates, photosynthesis and light in planktonic foraminifera. In: Westbroek, P., de Jong, E. J. (eds.) Biomineralization and biological metal accumulation. Reidel, Dordrecht, p. 307–313Google Scholar
  12. Gavis, J., Ferguson, J. F. (1975). Kinetics of carbon dioxide uptake by phytoplankton at high pH. Limnol. Oceanogr. 20: 211–221Google Scholar
  13. Gieskes, J. M. (1974). The alkalinity-total carbon dioxide system in seawater. In: Goldberg, E. D. (ed.) The Sea. Wiley, New York, 5: 123–151Google Scholar
  14. Goldman, J. C., Dennet, M. R. (1985). Susceptability of some marine phytoplankton species to cell breakage during filtration and post-filtration rinsing. J. exp. mar. Biol. Ecol. 86: 47–58Google Scholar
  15. Goreau, T. F. (1963). Calcium carbonate deposition by coralline algae and corals in relation to their role as reef builders. Ann. N.Y. Acad. Sci. 109: 127–167Google Scholar
  16. Goreau, T. J. (1977). Coral skeletal chemistry: physiological and environmental regulation of stable isotopes and trace metals in Montastrea annularis. Proc. R. Soc. (Ser. B) 196: 291–315Google Scholar
  17. Gran, G. (1952). Determination of the equivalence point in potentiometric titrations, part 2. Analyst, Lond. 77: 661–671Google Scholar
  18. Hemleben, Ch., Anderson, O. R., Berthold, W., Spindler, M. (1986). Calcification and chamber formation in Foraminifera — a brief overview. In: Leadbeater, B. S. C., Riding R. (eds.) Biomineralization in lower plants and animals. Syst. Ass. Spec. Vol. 30: 237–249Google Scholar
  19. Hill, R., Whittingham C. P. (1955). Photosynthesis. Methuen, LondonGoogle Scholar
  20. Jacques, T. G., Pilson, M. E. Q. (1980). Experimental ecology of the temperature scleractinian coral Astrangia danae. 1. Partition of respiration, photosynthesis and calcification between host and symbionts. Mar. Biol. 60: 167–178Google Scholar
  21. Kingsley, R. J. (1984). Spicule formation in the invertebrates with special reference to the Gorgonian Leptogorgia virgulata. Am. Zool. 24: 83–91Google Scholar
  22. Kingsley, R. J., Watabe, N. (1984). Calcium uptake in the Gorgonian Leptogorgia virgulata, the effects of ATPase inhibitors. Comp. Biochem. Physiol. 79A: 487–491Google Scholar
  23. Kuile, B., ter, Erez, J. (1984). In situ growth rate experiments on the symbiont-bearing foraminifera Amphistegina lobifera and Amphisorus hemprichii. J. foraml Res. 14: 262–276Google Scholar
  24. Kuile, B., ter, Erez, J. (1987). Uptake of inorganic carbon and internal carbon cycling in symbiont-bearing benthonic foraminifera. Mar. Biol. 94: 499–509Google Scholar
  25. Kuile, B., ter, Erez, J. (1988). The size and function of the internal inorganic carbon pool of the foraminifer Amphistegina lobifera. Mar. Biol. 99: 481–487Google Scholar
  26. Lee, J. J. (1983). Perspective on algal endosymbionts in larger foraminifera. Int. Rev. Cytol. 14: 49–77Google Scholar
  27. Lee, J. J., Bock, W. D. (1976). The importance of feeding in two species of soritid foraminifera with algal symbionts. Bull. Mar. Sci. 26: 530–537Google Scholar
  28. Lee, J. J., McEnery, M. E. (1983). Symbiosis in foraminifera. In: Goff, E. L. (ed.) Algal symbiosis. Cambridge University Press, Cambridge, p. 37–68Google Scholar
  29. Lee, J. J., McEnery, M. E., Garrison, J. R. (1980a). Experimental studies of larger foraminifera and their symbionts from the Gulf of Elat on the Red Sea. J. foraml Res. 10: 31–47Google Scholar
  30. Lee, J. J., McEnery, M. E., Kennedy, E., Rubin, H. (1975). A nutritional analysis of a sublittoral diatom assemblage epiphytic on Enteromorpha from a Long Island salt march. J. Phycol. 2: 14–49Google Scholar
  31. Lee, J. J., Reimer, C., McEnery, M. E. (1980b). The identification of diatoms isolated as endosymbionts from larger foraminifera from the Gulf of Elat (Red Sea) and the description of two new species, Fragilaria shiloi sp. nov. and Navicula reissi sp. nov. Botanica mar. 23: 41–48Google Scholar
  32. Leutenegger, S. (1977) Ultrastructure de Foraminiferes perfores et imperfores ainsi que leurs symbiotes. Cah. Micropaléont. (CNRS, Paris) 3: 1–52Google Scholar
  33. Leutenegger, S., Hansen, H. J. (1979). Ultrastructure and radiotracer studies of pore function in foraminifera. Mar. Biol. 54: 11–16Google Scholar
  34. Lucas, W. J. (1983). Photosynthetic assimilation of exogenous HCO3 - by aquatic plants. A. Rev. Pl. Physiol. 34: 71–104Google Scholar
  35. Muller, W.A., Lee, J.J. (1969). Apparent indispensability of bacteria in foraminiferan nutrition. J. Protozool. 16: 471–478Google Scholar
  36. Muscatine, L., D'Elia, C. F. (1978). The uptake, retention and release of ammonium by reef corals. Limnol. Oceanogr. 23: 725–734Google Scholar
  37. Padan, E., Schuldiner, S. (1986). Intracellular pH regulation in bacterial cells. Meth. Enzym. 125: 337–352Google Scholar
  38. Pentecost, A. (1980). Calcification in plants. Int. Rev. Cytol. 62: 1–25Google Scholar
  39. Poisson, A., Papaud, A. (1983). Diffusion coefficients of major ions in seawater. Mar. Chem. 13: 265–280Google Scholar
  40. Raven, J. A. (1970). Exogenous inorganic carbon sources in plant photosynthesis. Biol. Rev. 45: 167–221Google Scholar
  41. Raven, J. A. (1984). Energetics and transport in aquatic plants. Liss, New YorkGoogle Scholar
  42. Rottger, R. (1972). The culture of Heterostegina depressa (Foraminifera Nummulitidae). Mar. Biol. 15: 149–159Google Scholar
  43. Rottger, R. (1974). Larger foraminifera: reproduction and early stage of development in Heterostegina depressa. Mar. Biol. 26: 5–12Google Scholar
  44. Rottger, R. (1976). Ecological observations of Heterostegina depressa (Foraminifera Nummulitidae) in the laboratory and in its natural habitat. Marit. Sediments. Spec. Publ. 1: 75–79Google Scholar
  45. Rottger, R., Irwan, A., Schmaljohann, R., Franzisket, L., (1980). Growth of the Symbiont-bearing foraminifera Amphistegina Lessonii D'Orbigny and Heterostegina Depressa D'Orbigny (Protozoa). In: Schwemmler, W., Schenk, H. E. A. (eds.) Endosymbiosis and Cell Biology 1: 125–132Google Scholar
  46. Sass, E., Ben-Yaakov, S. (1977). The carbonate system in hypersaline solutions. Dead Sea brine. Mar. Chem. 5: 183–199Google Scholar
  47. Sikes, S., Roer, R. D., Wilbur, K. M. (1980). Photosynthesis and coccolith formation: inorganic carbon sources and net inorganic reaction of deposition. Limnol. Oceanogr. 25: 248–261Google Scholar
  48. Smith, A. D., Roth, A. A. (1979). Effect of carbon dioxide concentration on calcification in the red coraline alga Bossiella orbigniana. Mar. Biol. 52: 217–255Google Scholar
  49. Smith, F. A., Walker, N. A. (1980). Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3 - and to carbon isotopic discrimination. New Phytol. 86: 245–259Google Scholar
  50. Strickland, J. D., Parsons, R. (1972). A practical handbook of sea-water analysis, 2nd edn. Fish. Res. Bd Can.Google Scholar
  51. Stumm, W., Morgan, J. (1981). Aquatic chemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  52. Vandermeulen, J. H., Davis, N. D., Muscatine, L. (1972). The effect of inhibitors of photosynthesis on zooxanthellae in corals and other marine invertebrates. Mar. Biol. 16: 185–191Google Scholar
  53. Volokita, M., Kaplan, A., Reinhold, L. (1983). Nature of the rate-limiting step in the supply of inorganic carbon for photosynthesis in isolated Asparagus mesophyll cells. Pl. Physiol., Wash. 72: 886–890Google Scholar
  54. Weiner, S. (1986). Organization of extracellularly mineralized tissues: a comparative study of biological crystal growth. CRC critical Rev. Biochem 220: 365–408Google Scholar
  55. Weiner, S., Erez, J. (1984). Organic matrix of the shell of the foraminifer, Heterostegina depressa. J. foraml Res. 14: 206–212Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • B. ter Kuile
    • 1
  • J. Erez
    • 2
  • E. Padan
    • 3
  1. 1.The Interuniversity Institute of EilatHebrew University of JerusalemEilatIsrael
  2. 2.Department of GeologyThe Hebrew University of JerusalemJerusalemIsrael
  3. 3.Department of Microbial and Molecular EcologyThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations