Journal of Materials Science

, Volume 27, Issue 6, pp 1479–1483 | Cite as

Preparation of needle-like TiZrO4 and PZT powders

  • T. Kimura
  • A. Takenaka
  • T. Mifune
  • Y. Hayashi
  • T. Yamaguchi
Papers

Abstract

Needle-like TiZrO4 powder was prepared by reacting TiO2 and ZrO2 in the presence of molten chloride (NaCI or KCI) or sulphate (Na2SO4 or Li2SO4). Either a single-phase TiZrO4 or a three-phase mixture (TiZrO4, ZrO2 and amorphous TiO2) was obtained from the chloride or sulphate system. Particle morphology was dependent on heating temperature and duration as well as salt species. Needle-like PZT powder was obtained by reacting needle-like TiZrO4 powder with PbO above 750 °C. The PZT powder obtained at 750°C was composed of both tetragonal and rhombohedral phases, indicating a wide compositional variation. An increase in heating temperature reduced the degree of compositional variation, but enhanced the deformation of needle-like particles.

Keywords

Polymer Sulphate Chloride TiO2 Na2SO4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. L. Messing, K. S. Mazdiyasini, J. W. McCauley and R. A. Haber (eds) “Ceramic Powder Science” (American Ceramics Society, Westerville, Ohio, 1987).Google Scholar
  2. 2.
    G. L. Messing, E. Fuller and H. Hausner (eds) “Ceramic Powder Science II” (American Ceramic Society, Westerville, Ohio, 1988).Google Scholar
  3. 3.
    T. Kimura and T. Yamaguchi, in “Ceramic Powder Science” edited by G. L. Messing, K. S. Mazdiyasii, J. W. McCauley and R. A. Haber (American Ceramics Society, Westerville, Ohio, 1987). p. 169.Google Scholar
  4. 4.
    Y. Hayashi, T. Kimura and T. Yamaguchi, J. Mater. Sci. 21 (1986) 757.Google Scholar
  5. 5.
    Idem, ibid. 21 (1986) 2876.Google Scholar
  6. 6.
    R. W. Lynch and B. Morosin, J. Amer. Ceram. Soc. 55 (1972) 409.Google Scholar
  7. 7.
    T. Yamaguchi, S. H. Cho, M. Hakomori and H. Kuno, Ceramurgia Int. 2 (1976) 76.Google Scholar
  8. 8.
    F. H. Brown, Jr. and P. Duwez, J. Amer. Ceram. Soc. 37 (1954) 129.Google Scholar
  9. 9.
    L. W. Coughanour, R. S. Roth and V. A. DeProsse, J. Res. Nat. Bur. Stand. 52 (1954) 37.Google Scholar
  10. 10.
    A. Cocco and G. Torriano, Ann. Chim. (Rome) 55 (1965) 153.Google Scholar
  11. 11.
    T. Noguchi, in “High Temperature Technology”—Proceedings of the 3rd International Symposium, Asilomar, California, 1967 (Butterworths, London, 1969) p. 235.Google Scholar
  12. 12.
    A. E. McHale and R. S. Rogh, J. Amer. Ceram. Soc. 69 (1986) 827.Google Scholar
  13. 13.
    D. Elwell and H. J. Scheel, in “Crystal Growth from High Temperature Solutions” (Academic, New York, 1975) p. 202.Google Scholar
  14. 14.
    F. A. Nichols, J. Mater. Sci. 11 (1976) 1077.Google Scholar
  15. 15.
    A. J. Moulson and J. M. Herbert, in “Electroceramics” (Chapman & Hall, New York, 1990) p. 276.Google Scholar
  16. 16.
    K. Kakegawa, K. Arai, Y. Sasaki and T. Tomizawa, J. Amer. Ceram. Soc. 71 (1988) C-49.Google Scholar
  17. 17.
    B. V. Hiremath, A. I. Kingon and J. V. Biggers, ibid. 66 (1983) 790.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • T. Kimura
    • 1
  • A. Takenaka
    • 1
  • T. Mifune
    • 1
  • Y. Hayashi
    • 1
  • T. Yamaguchi
    • 1
  1. 1.Faculty of Science and TechnologyKeio UniversityYokohamaJapan

Personalised recommendations