Journal of Materials Science

, Volume 16, Issue 4, pp 1063–1070 | Cite as

Portland cement clinker viewed by transmission electron microscopy

  • G. W. Groves
Papers

Abstract

Thin sections of Portland cement clinker have been prepared by ion-beam thinning and examined in the electron microscope. The three most abundant phases, alite, belite and tricalcium aluminate have been identified. Features of interest include unexplained reflections in the diffraction patterns from alite and internally twinned or faulted martensite plates in belite. Hydrate gel coatings are obtained on the silicate phases but not on the aluminate phase, by immersing the thinned clinker in water. Dislocations in the aluminate phase do not appear to affect its reaction with water. On alite, easily observable hydrate coatings are obtained after immersion times as short as 5 min.

Keywords

Polymer Aluminate Reflection Transmission Electron Microscopy Hydrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. M. Lea, “The Chemistry of Cement and Concrete” (Edward Arnold, London, 1970) p. 102.Google Scholar
  2. 2.
    A. Grudemo in “The Chemistry of Cements” Vol. 1, edited by H. F. W. Taylor (Academic Press, London 1964) p. 371.Google Scholar
  3. 3.
    J. A. Gard in “The Chemistry of Cements” Vol. 2, edited by H. F. W. Taylor (Academic Press, London, 1964) p. 243.Google Scholar
  4. 4.
    D. D. Double, A. Hellawell and S. J. Perry, Proc. Roy. Soc. A359 (1978) 435.Google Scholar
  5. 5.
    D. J. Clinton, Micron 3 (1972) 358.Google Scholar
  6. 6.
    D. Pearson, thesis submitted for Part II Examination in Metallurgy and Science of Materials, University of Oxford, 1980.Google Scholar
  7. 7.
    H. M. Flower, N. J. Tighe and P. R. Swann, “High Voltage Electron Microscopy”, edited by P. R. Swann, C. J. Humphreys and M. J. Goringe (Academic Press, London, 1974) p. 383.Google Scholar
  8. 8.
    J. W. Jeffery, Acta Cryst. 5 (1952) 26.Google Scholar
  9. 9.
    Y. Ono, S. Kawamura and Y. Soda, Proceedings of the International Symposium on the Chemistry of Cement (Cement Association of Japan, Tokyo, 1968) Vol. 1, p. 275.Google Scholar
  10. 10.
    W. Lieber, Proceedings of the 5th International Symposium on the Chemistry of Cement (Cement Association of Japan, Tokyo, 1968) Supplementary paper II-22.Google Scholar
  11. 11.
    H. W. F. Taylor in “The Chemistry of Cements” Vol. 1, edited by H. W. F. Taylor (Academic Press, London, 1964) p. 183.Google Scholar
  12. 12.
    F. M. Lea “The Chemistry of Cement and Concrete” (Edward Arnold, London, 1970) p. 322.Google Scholar
  13. 13.
    I. Jelenic, A. Bezjak and M. Bujan, Cement Concrete Res. 8 (1978) 173.Google Scholar
  14. 14.
    G. Yamaguchi and S. Takagi, Proceedings of the Fifth International Symposium of the Chemistry of Cement (Cement Association of Japan, Tokyo, 1968) Vol. 1, p. 181.Google Scholar
  15. 15.
    G. K. Bansal and A. H. Heuer, Acta Met. 22 (1974) 409.Google Scholar
  16. 16.
    C. M. Wayman, “Introduction to the Crystallography of Martensitic Transformations” (Macmillan, New York, 1964).Google Scholar
  17. 17.
    P. Mondal and J. W. Jeffery, Acta Cryst. B31 (1975) 689.Google Scholar

Copyright information

© Chapman and Hall Ltd 1981

Authors and Affiliations

  • G. W. Groves
    • 1
  1. 1.Department of Metallurgy and Science of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations