Journal of Materials Science

, Volume 16, Issue 4, pp 973–982 | Cite as

The role of amorphous phase separation in crystal nucleation in splat cooled Li2O-SiO2 glasses

  • E. D. Zanotto
  • A. F. Craievich


Amorphous phase separation and its influence on crystal nucleation in Li2O-SiO2 splat cooled glasses was studied. By means of small-angle X-ray scattering and optical reflection microscopy associated with stereological analysis it was shown that the crystal nucleation rate is increased during the early stages of primary and secondary phase separation. These observations emphasize the important role played by the diffusion zone around the amorphous droplets acting as nucleation sites. Some suggestions are advanced to explain why some authors found that the amorphous separation does not influence the crystal nucleation.


Polymer Microscopy Reflection Phase Separation Nucleation Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. D. Stookey, Brit. Patent No. 752 243. (1956).Google Scholar
  2. 2.
    W. Vogel and K. Gerth, Symposium on Nucleation and Crystallization in Glasses and Metals (American Ceramic Society, Columbus, Ohio, 1962) p. 11.Google Scholar
  3. 3.
    S. M. Ohlberg, H. R. Golob and D. W. Strickler, ibid. (1962) p. 55.Google Scholar
  4. 4.
    J. W. Cahn, J. Amer. Ceram. Soc. 52 (1968) 118.Google Scholar
  5. 5.
    D. R. Uhlmann, Disc. Faraday Soc. Remarks 50 (1970) 233.Google Scholar
  6. 6.
    A. H. Ramsden, Ph.D. thesis, University of Sheffield, UK (1977).Google Scholar
  7. 7.
    K. Nakagawa and T. Izumitani, Phys. Chem. Glasses 10 (1969) 179.Google Scholar
  8. 8.
    H. Harper, P. F. James and P. W. McMillan, Disc. Faraday Soc. 56 (1970) 206.Google Scholar
  9. 9.
    M. Tomozawa, Phys. Chem. Glasses 14 (1972) 77.Google Scholar
  10. 10.
    K. Matusita and M. Tashiro, Phys. Chem. Glasses 15 (1974) 106.Google Scholar
  11. 11.
    P. Hautojarvi and V. Komppa, J. Non-Cryst. Sol. 29 (1978) 365.Google Scholar
  12. 12.
    A. Guinier, “X-Ray Diffraction”, (W. H. Freeman and Co., New York, 1963) p. 327.Google Scholar
  13. 13.
    G. Porod, Kolloid. Z. 124 (1951) 83.Google Scholar
  14. 14.
    J. W. Christian, “The Theory of Transformations of Metals and Alloys” (Pergamon Press, Oxford and New York, 1969).Google Scholar
  15. 15.
    K. Matusita and M. Tashiro, J. Non-Cryst. Sol. 11 (1973) 471.Google Scholar
  16. 16.
    R. T. De Hoff and F. N. Rhines, Trans. AIME 221 (1961) 975.Google Scholar
  17. 17.
    P. F. James, Phys. Chem. Glasses 15 (1974) 95.Google Scholar
  18. 18.
    A. F. Craievich, ibid. 16 (1975) 133.Google Scholar
  19. 19.
    J. Slaets and A. F. Craievich, J. Phys. E. 9 (1976) 739.Google Scholar
  20. 20.
    W. Luzatti, Acta Cryst. 13 (1960) 939.Google Scholar
  21. 21.
    P. F. James, B. Scott and P. Armstrong, Phys. Chem. Glasses 19 (1978) 24.Google Scholar
  22. 22.
    C. J. R. Gonzales-Oliver, P. F. James and P. S. Johnson, J. Mater. Sci. 14 (1979) 1159.Google Scholar
  23. 23.
    K. Matusita and M. Tashiro, Phys. Chem. Glasses 14 (1973) 77.Google Scholar

Copyright information

© Chapman and Hall Ltd 1981

Authors and Affiliations

  • E. D. Zanotto
    • 1
  • A. F. Craievich
    • 2
  1. 1.Departamento de Engenharia de MateriaisUniversidade Federal de São CarlosSão Carlos, São PauloBrazil
  2. 2.Departamento de Física e Ciência dos Materiais, Instituto de Física e Química de São CarlosUniversidade de São PauloSão Carlos, São PauloBrazil

Personalised recommendations