Advertisement

Ingenieur-Archiv

, Volume 60, Issue 6, pp 367–377 | Cite as

On the concept of an equivalent column in the stability problem of compressed helical springs

  • J. Krużelecki
  • Michal Życzkowski
Originals

Summary

A more exact equivalent column for buckling of helical springs is introduced. It accounts for the pitch angle and possible buckling in two planes. Non-linear compression rigidity, local bending and shear rigidities as well as lower bounds for the mean values of these rigidities are established. The problem of anisotropy of buckling of helical springs is investigated in detail.

Keywords

Neural Network Anisotropy Complex System Lower Bound Information Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zum konzept äquivalenter stäbe für das knickproblem von Schraubenfedern

Übersicht

Vorgeschlagen wird ein verbessertes Konzept äquivalenter Stäbe für die Knickung von Schraubenfedern. Der Steigungswinkel der Schraubenlinie sowie Knickung in zwei Ebenen werden berücksichtigt. Nichtlineare Drucksteifigkeit, lokale Biege- und Schubsteifigkeiten sowie untere Schranken für Mittelwerte dieser Steifigkeiten werden ermittelt. Das Problem der Anisotropie der Knickung von Schraubenfedern wird eingehend untersucht.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berdychevsky, V. L.; Sutyrin, V. G.: A problem of an equivalent rod in nonlinear theory of springs (in Russian). Prikl. Mat. Mekh. 47 (1983) 238–248Google Scholar
  2. 2.
    Biezeno, C. B.; Koch, J. J.: Knickung von Schraubenfedern. Z. Angew. Math. Mech. 5 (1925) 279–280Google Scholar
  3. 3.
    Chernyshev, A. N.: Stability of compressed helical springs (in Russian). In: Ponomariev, S. D. (ed.) Novye metody rascheta pruzhin, pp. 57–78. Moskva: Gosud. Nau.-Tech. Izd. Mashinnostr. Liter. 1946Google Scholar
  4. 4.
    Grammel, R.: Die Knickung von Schraubenfedern. Z. Angew. Mat. Mech. 4 (1924) 384–389Google Scholar
  5. 5.
    Haringx, J. A.: On the bucklng and the laterial rigidity of helical springs. Proc. Ned. Akad. Wet. 45 (1942) 533–539, 650–654Google Scholar
  6. 6.
    Haringx, J. A.: On highly compressible helical springs and rubber rods, and their application for vibration-free mountings. Philips Res. Rep. 3 (1948) 401–449Google Scholar
  7. 7.
    Hurlbrink, E.: Berechnung zylindrischer Druckfedern auf Sicherheit gegen seitliches Ausknicken. Z. Ver. Dt. Ing. 54 (1910) 133–137, 181–184Google Scholar
  8. 8.
    Kernchen, E.: Zur Stabilität von Schraubenfedern. Ing. Arch. 48 (1979) 382–392Google Scholar
  9. 9.
    Nikolai, E. L.: On problems of spatially curved elastic bar (in Russian). In: Nikolai, E. D. (ed.) Trudy po mekhanike, pp. 45–277. Moskva: Gosud. Izd. Tech.-Teoret. Lit. 1955Google Scholar
  10. 10.
    Olenov, V. A.: Approximative method of calculation of critical load for multiwire helical springs under compression (in Russian). Izv. Vysh. Ucheb. Zav., Mashinostr. 9 (1977) 9–14Google Scholar
  11. 11.
    Polishchuk, D. F.: Elastic stability of helical springs (in Russian). Dinamika, Prochnost i Dolgovechnost Detaley Mashin 2 (1977) 38–47Google Scholar
  12. 12.
    Ponomariev, S. D.: Stability of helical springs under compression and torsion (in Russian). In: Chudakov, E. A. (ed.) Mashinostr., Vol. 2, pp. 683–685. Moskva: Gosud. Nauch.-Tech. Izd. Mashinostr. Lit. 1948Google Scholar
  13. 13.
    Satoh, T.; Kunoh, T.; Mizuno, M.: Buckling of coiled springs by combined torsion and axial compression JSME Int. J., Ser. 1, 31 (1988) 56–62Google Scholar
  14. 14.
    Timoshenko, S. P.; Gere, J. M.: Theory of elastic stability (2nd ed.) New York, Toronto, London: McGraw Hill 1961Google Scholar
  15. 15.
    Trostel, R.: Beitrag zur Berechnung räumlich gekrümmter Stäbe nach der Theorie erster Ordnung. Ing. Arch. 25 (1957) 414–423Google Scholar
  16. 16.
    Wahl, A. M.: Mechanical springs. New York, Toronto, London: McGraw Hill 1963Google Scholar
  17. 17.
    Ziegler, H.: Arguments for and against Engesser's formulas. Ing. Arch. 52 (1982) 105–113Google Scholar
  18. 18.
    Ziegler, H.; Huber, A.: Zur Knickung der gedrückten und tordierten Schraubenfeder. Z. Angew. Math. Phys. 1 (1950) 183–195Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • J. Krużelecki
    • 1
  • Michal Życzkowski
    • 1
  1. 1.Department of Mechanical EngineeringPolitechnika Krakowska (Technical University of Cracow)KrakówPoland

Personalised recommendations