Skip to main content
Log in

Chemical stress cracking of acrylic fibres

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The generation of periodic microscopic transverse cracks in oriented acrylic fibres immersed in hot alkaline hypochlorite solution is described in detail and shown to be a variety of chemical stress cracking. It is greatly accelerated by external tensile stress, high fibre permeability, moderate fibre orientation, and water-plasticization. The proposed mechanism for bond cleavage involves cyclization of nitrile groups (similar to the “prefatory reaction” in pyrolysis of acrylic fibres), followed immediately by N-chlorination and chain scission. Mechanical retractile forces (internal or external) then cause chain retraction and crack growth. Despite the remarkable regularity of the crack pattern, which typically resembles a series of stacked lamellae, the process is independent of any such underlying fibre morphology. The cracking process does, however, appear to be a sensitive indicator of residual latent strain in the fibre, which may persist even after high-temperature annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. Warner, D. R. Uhlmann and L. H. Peebles, Jr, J. Mater. Sci. 10 (1975) 758.

    Google Scholar 

  2. S. S. Chen, J, Herms, L. H. Peebles, Jr and D. R. Uhlmann, ibid. 16 (1980) 1490.

    Google Scholar 

  3. J. B. Howard, in “Crystalline Olefin Polymers” Part 2, Vol. 20 of High Polymers, edited by R. A. Raff and K. W. Doak (Wiley, New York, 1965).

    Google Scholar 

  4. Idem, in “Encyclopedia of Polymer Science” Vol. 7, edited by H. Mark (Wiley, New York, 1967).

    Google Scholar 

  5. R. P. Kambour, in “Mechanisms of Environment-Sensitive Cracking of Materials”, edited by P. R. Swann, F. P. Ford and A. C. R. Guildford (Metals Society, London, 1977).

    Google Scholar 

  6. E. J. Kramer, in “Developments in Polymer Fracture-1”, edited by E. H. Andrews (Applied Science Publishers, London, 1980).

    Google Scholar 

  7. P. L. Cornes, K. Smith and R. N. Howard, J. Polym. Sci. Phys. 15 (1977) 955.

    Google Scholar 

  8. E. H. Andrews, “Fracture in Polymers” (American Eisevier, New York, 1968).

    Google Scholar 

  9. R. W. Murray, in “Polymer Stabilization”, edited by W. L. Hawkins (Wiley, New York, 1971).

    Google Scholar 

  10. G. E. Sweet and A. P. Bell, J. Polym. Sci. Phys. 16 (1978) 2057.

    Google Scholar 

  11. T. Hinton and A. Keller, J. Appl. Polym. Sci. 13 (1969) 745.

    Google Scholar 

  12. L. F. Fieser and M. Fieser, “Reagents for Organic Synthesis” (Wiley, New York, 1967).

    Google Scholar 

  13. M. W. Lister, Can. J. Chem. 34 (1956) 465.

    Google Scholar 

  14. J. A. Wojtowicz, in “Encyclopedia of Chemical Technology” Vol. 5, 3rd edn., edited by R. E. Kirk and D. F. Othmer (Wiley, New York, 1979).

    Google Scholar 

  15. S. B. Warner, ScD thesis, MIT (1976).

  16. J. Brandrup and E. H. Immergut, “Polymer Handbook” (Wiley, New York, 1975).

    Google Scholar 

  17. W. J. Roff and J. R. Scott, “Handbook of Common Polymers” (CRC press, Cleveland, 1971).

    Google Scholar 

  18. L. H. Peebles, JR, unpublished results (1965).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herms, J., Peebles, L.H. & Uhlmann, D.R. Chemical stress cracking of acrylic fibres. J Mater Sci 18, 2517–2530 (1983). https://doi.org/10.1007/BF00541859

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00541859

Keywords

Navigation