Journal of Materials Science

, Volume 18, Issue 8, pp 2510–2516 | Cite as

X-ray diffraction analysis at high temperature on two ceramic systems

  • A. Benedetti
  • G. Fagherazzi
  • S. Meriani
Papers

Abstract

The β-eucryptite/β-spodumene phase transition in glass fibres of a SiO2-Al2O3-Li2O-MgO-ZnO-K2O-P2 (O5) system and the crystallization of a ZrO2-CeO2 solid solution have been studied in situ, at high temperature, using a special home-made thermal attachment for X-ray powder vertical diffractometers. The β-eucryptite/β-spodumene transition was observed in the temperature range between 865 and 930° C. A significant unit cell shrinkage was observed for β-eucryptite from which it is possible to conclude that the first crystallized phase is surely an eucryptite-silica solid solution. This agrees with the small thermal effect shown by DTA for this crystalline transition. With the same high temperature attachment the evolution of the average crystallite size, L111, was followed as a function of the thermal treatment in a 0.84 ZrO2-0.16 CeO2 tetragonal structured solid solution.

Keywords

Crystallization Phase Transition Solid Solution Shrinkage CeO2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Benedetti, G. Cocco, G. Fagherazzi, B. Locardi and S. Meriani, J. Mater. Sci. 18 (1983) 1039.Google Scholar
  2. 2.
    G. Spinolo, V. Massarotti and G. Campari, J. Phys. E: Sci. Instrum. 12 (1979) 1059.Google Scholar
  3. 3.
    P. E. Doherty, D. W. Lee and R. S. Davis, J. Amer. Ceram. Soc. 50 (1967) 77.Google Scholar
  4. 4.
    B. J. Skinner and H. T. Evans Jr, Amer. J. Sci. 258A (1960) 312.Google Scholar
  5. 5.
    H. G. F. Winkler, Acta Cryst. 1 (1948) 27.Google Scholar
  6. 6.
    T. Isaacs and R. Roy, Geochim. Cosmochim. Acta 15 (1958) 213.Google Scholar
  7. 7.
    Chi-Tang Li and D. R. Peacor, Z. Kristallogr. 126 (1968) 46.Google Scholar
  8. 8.
    R. Roy, “Symposium on Nucleation and Crystallization in Glasses and Melts” (American Ceramic Society, Columbus, Ohio, 1962) p. 39.Google Scholar
  9. 9.
    P. Keat, Science 20 (1954) 328.Google Scholar
  10. 10.
    A. Hatch, Amer. Mineral. 28 (1943) 471.Google Scholar
  11. 11.
    R. Roy, D. M. Roy and F. F. Osborn, J. Amer. Ceram. Soc. 33 (1950) 152.Google Scholar
  12. 12.
    J. I. Largford and A. J. C. Wilson, J. Appl. Cryst. 11 (1978) 102.Google Scholar
  13. 13.
    M. M. Hall Jr, V. G. Veeraraghavan, H. Rubin and P. G. Winchell, ibid. 10 (1977) 66.Google Scholar
  14. 14.
    J. Tekiz and C. Legrand, Compt. Rend. 261 (1965) 1247.Google Scholar
  15. 15.
    B. E. Warren, “X-ray Diffraction” (Addison-Wesley Publ. Co., Reading, Massachussets, 1969) p. 193.Google Scholar
  16. 16.
    C. A. Sorrell and C. C. Sorrell, J. Amer. Ceram. Soc. 60 (1977) 495.Google Scholar
  17. 17.
    Powder diffraction file, JCPDS 1974; Inorganic volume no. 4-0593.Google Scholar
  18. 18.
    S. Meriani and Sorarù, Proceedings of the 5th CIMTEC Congress, edited by P. Vincenzini (Lignano, Italy) in press.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • A. Benedetti
    • 1
  • G. Fagherazzi
    • 1
  • S. Meriani
    • 2
  1. 1.Istituto di Chimica FisicaUniversità Cà FoscariVeneziaItaly
  2. 2.Istituto di Chimica Applicata, UniversitàTriesteItaly

Personalised recommendations