Journal of Materials Science

, Volume 18, Issue 8, pp 2437–2452 | Cite as

High resolution X-ray diffraction of fully and partially magnesium stabilized beta″-alumina ceramics

  • F. Harbach


The dependence of the unit cell size of β″-Al2O3 on its sodium and magnesium content has been stated in the past in a contradictory manner. This situation is clarified on the basis of high resolution Guinier photographs of the X-ray diffraction of fully stabilized ternary β″-Al2O3 ceramics with compositions of Na1+z MgzAl11−zO17. The lattice constant a0 increases with increasing z over the range of 0.5 to 0.8. In contrast, the height H of the conduction slab decreases with increasing z. Both values level off at z ⩾ 0.8. This behaviour is discussed using simple models. The X-ray diffraction patterns of β″-Al2O3 ceramics can show considerable splittings of reflections with high Miller indices / for compositions which do not correspond to the above formula. These splittings can be attributed to the simultaneous presence of two different β″-Al2O3 component phases — a fully and a partially magnesium stabilized one. The excess sodium of the partially stabilized component phase is shown to be charge compensated by interstitial oxygen ions in the conduction slab, which is equivalent to the widely accepted compensation mechanism for the excess sodium of binary β-Al2O3.


Al2O3 Component Phase Magnesium Content Miller Index Interstitial Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Yamaguchi and K. Suzuki, Bull. Chem. Soc. Jpn. 41 (1968) 93.Google Scholar
  2. 2.
    M. Bettman and C. R. Peters, J. Phys. Chem. 73 (1969) 1774.Google Scholar
  3. 3.
    J. T. Kummer, Progr. Solid State Chem. 7 (1972) 141.Google Scholar
  4. 4.
    J. Felsche, Jahresbericht 1976 an das BMFT; Projekt-Nr. ET 4069: Entwicklung von Natrium/Schwefel-Akkumulatoren, Untersuchung des Feststoffelektrolyten β-Al2O3.Google Scholar
  5. 5.
    J. B. Bates, H. Engstrom, J. C. Wang, B. C. Larson, N. J. Dudney and W. E. Brundage, Solid State Ionics 5 (1981) 159.Google Scholar
  6. 6.
    R. M. Dell and P. T. Moseley, J. Power Sources 6 (1981) 143.Google Scholar
  7. 7.
    J. P. Boilot, G. Collin, Ph. Colomban and R. Comes, Phys. Rev. B 22 (1980) 5912.Google Scholar
  8. 8.
    G. J. May and C. M. B. Henderson, J. Mater. Sci. 14 (1979) 1229.Google Scholar
  9. 9.
    J. P. Boilot, Ph. Colomban, G. Collin and R. Comes, J. Phys. Chem. Solids 41 (1980) 47.Google Scholar
  10. 10.
    J. P. Boilot, Ph. Colomban, R. Collongues, G. Collin and R. Comes, ibid. 41 (1980) 253.Google Scholar
  11. 11.
    C. A. Beevers and M. A. S. Ross, Z. Krist. 97 (1937) 59.Google Scholar
  12. 12.
    J. Felsche, Jahresbericht 1978 an das BMFT: Entwicklung der Natrium/Schwefel-Batterie, Teilprojekt ET 4176 A: Untersuchung des Feststoffelektrolyten β-Al2O3.Google Scholar
  13. 13.
    W. L. Roth, Trans. Amer. Crystallogr. Assoc. 11 (1975) 51.Google Scholar
  14. 14.
    W. L. Roth, F. Reidinger and S. La Placa, in “Superionic Conductors”, edited by G. D. Mahan and W. L. Roth (Plenum Press, New York, London, 1976) pp. 223–41.Google Scholar
  15. 15.
    W. Hayes, L. Holden and B. C. Tofield, Solid State Ionics 1 (1980) 373.Google Scholar
  16. 16.
    A. K. Ray and E. C. Subbarao, Mater. Res. Bull. 10 (1975) 585.Google Scholar
  17. 17.
    F. Harbach, “Sinterung von Festelektrolytkeramiken unter Einsatz von stöchiometrischer magnesium-stabilisierter Beta“-Tonerde”, Proceedings of the 4th International Joint Meeting on Electro- and Magneto-ceramics, Celle, Germany, October 1981 (Deutsche Keramische Gesellschaft, Bad Honnef, 1982) pp. 128–41.Google Scholar
  18. 18.
    C. R. Peters, M. Bettman, J. W. Moore and M. D. Glick, Acta Crystallogr. B 27 (1971) 1826.Google Scholar
  19. 19.
    J. L. Briant and G. C. Farrington, J. Solid State Chem. 33 (1980) 385.Google Scholar
  20. 20.
    J. B. Bates, G. M. Brown, T. Daneda, W. E. Brundage, J. C. Wang and H. Engstrom in “Fast Ion Transport in Solids — Electrodes and Electrolytes”, edited by P. Vashishta, J. N. Mundy and G. K. Shenoy (North-Holland, New York, Amsterdam, Oxford, 1979) pp. 261–66.Google Scholar
  21. 21.
    G. M. Brown, D. A. Schwinn, J. B. Bates and W. E. Brundage, Solid State Ionics 5 (1981) 147.Google Scholar
  22. 22.
    G. Collin, Ph. Colomban, J. P. Boilot and R. Comes, in “Fast Ion Transport in Solids — Electrodes and Electrolytes”, edited by P. Vashishta, J. N. Mundy and G. K. Shenoy (North-Holland, New York, Amsterdam, Oxford, 1979) pp. 312–14.Google Scholar
  23. 23.
    F. Harbach, to be published.Google Scholar
  24. 24.
    D. Schwarzenbach, ETH Zürich: LATCON — a general program for the LS-refinement of lattice constants; this program has kindly been made available by Professor Felsche, University of Konstanz.Google Scholar
  25. 25.
    W. L. Roth, General Electric Corporate Research and Development Report 74 CRD 054.Google Scholar
  26. 26.
    L. Pauling, “Die Natur der Chemischen Bindung” (Verlag Chemie, Weinheim, 1962).Google Scholar
  27. 27.
    J. C. Wang, J. Chem. Phys. 73 (1980) 5786.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • F. Harbach
    • 1
  1. 1.Brown, Boveri and Cie AG, Zentrales ForschungslaborHeidelberg 1Federal Republic of Germany

Personalised recommendations