Journal of Materials Science

, Volume 18, Issue 8, pp 2371–2379 | Cite as

55Fe diffusion in magnetite crystals at 500° C and its relevance to oxidation of iron

  • A. Atkinson
  • M. L. O'Dwyer
  • R. I. Taylor
Papers

Abstract

A computer controlled sputter-sectioning apparatus is described which is particularly useful for self diffusion studies at “low” temperatures (D in the range 10−12 to 10−19cm2 sec−1). The technique has been applied to measure the diffusion coefficient of 55Fe in the magnetite lattice as a function of oxygen activity at 500° C. The results are in broad agreement with an extrapolation of pre-existing high temperature diffusion data (T>900°C). The low temperature data have been used to estimate the rate constant for magnetite formation on iron in CO2 + 1 vol% CO at 500° C and this is found to be 250 times smaller than the experimentally measured value. This disagreement is probably attributable to diffusion along oxide grain boundaries during oxidation. The rate constant for the formation of magnetite during the oxidation of iron in oxygen has also been calculated from the diffusion data and is compared with the measured rate constant for temperatures between 325 and 1100°C.

Keywords

Oxidation Oxygen Iron Polymer Diffusion Coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Himmel, R. F. Mehl and C. E. Birchenall, Trans. AIME 197 (1953) 827.Google Scholar
  2. 2.
    C. Wagner, Z. Phys. Chem. B21 (1933) 25.Google Scholar
  3. 3.
    A. Atkinson and R. I. Taylor, UK Atomic Energy Report AERE-R10289 (1981).Google Scholar
  4. 4.
    C. Gleave, J. M. Calvert, D. G. Lees and P. C. Rowlands, Proc. Roy. Soc. London A379 (1982) 409.Google Scholar
  5. 5.
    R. Dieckmann and H. Schmalzried, Ber. Bumen-Ges. 81 (1977) 344.Google Scholar
  6. 6.
    Idem, ibid. 81 (1977) 414.Google Scholar
  7. 7.
    N. L. Peterson, W. K. Chen and D. Wolf, J. Phys. Chem. Solids 41 (1980) 709.Google Scholar
  8. 8.
    A. Atkinson and R. I. Taylor, Thin Solid Films 46 (1977) 291.Google Scholar
  9. 9.
    Idem, Phil. Mag. A39 (1979) 581.Google Scholar
  10. 10.
    A. D. Le Claire and A. Rabinovitch, J. Phys. C: Solid State Phys. 15 (1982) 3455.Google Scholar
  11. 11.
    G. Garnaud and R. A. Rapp, Oxid. Met. 11 (1977) 193.Google Scholar
  12. 12.
    P. T. Moseley, G. Tappin and J. C. Riviere, Corros. Sci. 22 (1982) 69.Google Scholar
  13. 13.
    A. Atkinson, R. I. Taylor and A. E. Hughes, Phil. Mag. A45 (1982) 823.Google Scholar
  14. 14.
    D. E. Davis, U. R. Evans and J. N. Agar, Proc. Roy. Soc. London A225 (1954) 443.Google Scholar
  15. 15.
    W. E. Boggs, R. H. Kachik and G. E. Pellissier, J. Electrochem. Soc. 112 (1965) 539.Google Scholar
  16. 16.
    A. G. Goursat and W. W. Smeltzer, Oxid. Met. 6 (1973) 101.Google Scholar
  17. 17.
    R. J. Hussey, G. I. Sproule, D. Caplan and M. J. Graham, Oxid. Met. 11 (1977) 65.Google Scholar
  18. 18.
    D. Caplan, G. I. Sproule, R. J. Hussey and M. J. Graham, ibid. 12 (1978) 67.Google Scholar
  19. 19.
    D. Caplan and M. Cohen, Corros. Sci. 6 (1966) 321.Google Scholar
  20. 20.
    R. J. Hussey, D. Caplan and M. J. Graham, Oxid. Met. 15 (1981) 421.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • A. Atkinson
    • 1
  • M. L. O'Dwyer
    • 1
  • R. I. Taylor
    • 1
  1. 1.Materials Development DivisionAERE HarwellUK

Personalised recommendations