Advertisement

Journal of Materials Science

, Volume 13, Issue 3, pp 571–579 | Cite as

Mechanical properties of unidirectionally transformed Cu-In alloys

  • B. G. Mellor
  • D. V. Edmonds
Papers

Abstract

Comprehensive hardness measurements and limited tensile tests have been made on eutectoid and off-eutectoid Cu-In alloys. The alloys were transformed by unidirectional heat-treatment techniques using a range of imposed growth rates which resulted in alignment of the pearlite microstructure and a range of interlamellar spacing. Room temperature hardness of the as-transformed alloys was found to vary linearly as a function of λ−1/2, where λ is the pearlite interlamellar spacing; the alloys were calculated to have cooled from the decomposition temperature at rates in the range 0.047 to 18.6 K min−1, which could result in variations of precipitation/coarsening reactions in the pearlitic phases contributing towards strength, as well as the lamellae interfaces. Hardness was also measured as a function of temperature and indicated a change in strengthening mechanism at ∼550 K, thought to indicate the temperature above which no significant strengthening was contributed by the pearlitic interfaces. Tensile failure of the lamellar structure occurred in a manner identical to directionally aligned Al-CuAl2 eutectics.

Keywords

Tensile Test Pearlite Lamellar Structure Hardness Measurement Strengthen Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. J. Davies, “Strengthening Methods in Crystals”, edited by A. Kelly and R. B. Nicholson (Elsevier, London, 1971) p. 485.Google Scholar
  2. 2.
    J. D. Livingston, Composites 4 (1973) 70.Google Scholar
  3. 3.
    G. J. Davies, “Practical Metallic Composites”, (Institution of Metallurgists, London, 1974) p. D1.Google Scholar
  4. 4.
    M. J. Salkind, F. D. Lemkey and F. D. George, “Whisker Technology”, edited by A. P. Levitt (Wiley, New York, 1967) p. 343.Google Scholar
  5. 5.
    G. A. Chadwick, Acta Met., 24 (1976) 1137.Google Scholar
  6. 6.
    J. D. Livingston, J. Mater. Sci. 5 (1970) 951.Google Scholar
  7. 7.
    F. M. A. Carpay, Acta Met. 18 (1970) 747.Google Scholar
  8. 8.
    D. Cheetham and N. Ridley, Met. Trans. 4 (1973) 2549.Google Scholar
  9. 9.
    B. G. Mellor and G. A. Chadwick, Metal Sci. 8 (1974) 65.Google Scholar
  10. 10.
    F. M. A. Carpay, Acta Met. 20 (1972) 929.Google Scholar
  11. 11.
    D. Cheetham and N. Ridley, J. Inst. Metals 99 (1971) 371.Google Scholar
  12. 12.
    J. D. Livingston, “In-Situ Composites”, Vol. 1, (National Materials Advisory Board, Washington, 1973) p. 87.Google Scholar
  13. 13.
    , Acta Met. 23 (1975) 521.Google Scholar
  14. 14.
    G. F. Bolling and R. H. Richman. Met. Trans. 1 (1970) 2095.Google Scholar
  15. 15.
    G. A. Chadwick and D. V. Edmonds, symposium on Applications in Ferrous Metallurgy, Sheffield, 1971, published as Chemical Metallurgy of Iron and Steel, I.S.I. Special Report No. 146 (1973) p.264.Google Scholar
  16. 16.
    D. Cheetham and N. Ridley, JISI 211 (1973) 648.Google Scholar
  17. 17.
    B. G. Mellor and D. V. Edmonds, Met. Trans. 8A (1977) 763.Google Scholar
  18. 18.
    8A (1977) 773.Google Scholar
  19. 19.
    K. B. Gove and J. A. Charles, The Metallurgist 6 (1973) 119.Google Scholar
  20. 20.
    G. A. Chadwick, “In-Situ Composites”, Vol. 2, (National Materials Advisory Board, Washington, 1976) p. 474.Google Scholar
  21. 21.
    B. J. Shaw, Acta Met. 15 (1967) 1169.Google Scholar
  22. 22.
    I. G. Davies and A. Hellawell, Phil. Mag. 19 (1969) 1285.Google Scholar
  23. 23.
    H. E. Cline and D. Lee, Acta Met. 18 (1970) 315.Google Scholar
  24. 24.
    E. R. Thompson, F. D. George and E. M. Breinan, “In-Situ Composites”, Vol. 2, (National Materials Advisory Board, Washington, 1973) p. 71.Google Scholar
  25. 25.
    F. W. Crossman, A. S. Yue and A. E. Vidoz, Trans. Met. Soc. AIME 254 (1969) 397.Google Scholar
  26. 26.
    H. R. Bertorello and H. Biloni, Met. Trans. 3 (1972) 73.Google Scholar
  27. 27.
    M. Gensamer, E. B. Pearsall and G. V. Smith, Trans. ASM 28 (1940) 380.Google Scholar
  28. 28.
    M. Gensamer, E. B. Pearsall, W. S. Pellini and J. R. Low, 30 (1942) 983.Google Scholar
  29. 29.
    T. Takahashi and M. Nagumo, Trans. Japan Inst. Metals 11 (1970) 113.Google Scholar
  30. 30.
    S. Justi and R. H. Bragg, Met. Trans. 6A (1976) 1954.Google Scholar
  31. 31.
    H. Bohm, Z. Metallk. 50 (1959) 87.Google Scholar
  32. 32.
    52 (1961) 512.Google Scholar
  33. 33.
    D. J. H. Corderoy and R. W. K. Honeycombe, J. Inst. Metals 92 (1963) 65.Google Scholar
  34. 34.
    J. M. Shapiro and J. S. Kirkaldy, Acta Met. 16 (1968) 1239.Google Scholar
  35. 35.
    J. H. Westbrook, Trans. ASM 45 (1953) 221.Google Scholar
  36. 36.
    J. L. Walter and H. E. Cline, Met. Trans. 1 (1970) 1221.Google Scholar
  37. 37.
    B. Cantor, G. J. May and G. A. Chadwick, J. Mater. Sci. 8 (1973) 830.Google Scholar
  38. 38.
    A. R. T. de Silva, PhD Dissertation, University of Cambridge, 1969.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1978

Authors and Affiliations

  • B. G. Mellor
    • 1
  • D. V. Edmonds
    • 1
  1. 1.Department of Metallurgy and Materials ScienceUniversity of CambridgeCambridgeUK

Personalised recommendations