Journal of Materials Science

, Volume 9, Issue 11, pp 1745–1753 | Cite as

Fracture resistance of paper

  • R. S. Seth
  • D. H. Page


An attempt has been made to apply the concepts of fracture mechanics to describe the behaviour of a paper sheet with a crack. Considering paper as an orthotropic homogeneous continuum, the critical strain energy release rate, Gc, for eight different papers has been measured using linear elastic fracture mechanics. Also, a direct measurement of work of fracture, R, has been made for these samples by using the quasi-static crack propagation technique. For both techniques, results independent of specimen dimensions were obtained. Gc and R were found to be experimentally equivalent. The fracture toughness of paper has been compared with that of other engineering materials.


Polymer Fracture Toughness Release Rate Direct Measurement Fracture Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Initial crack length (cm)


Elements of compliance matrix ā (cm2 dyn−1)


Area of fractured surface (cm2)


Specimen width (cm)


Young's modulus (dyn cm−2)


Young's modulus in the machine direction (dyn cm−2)


Young's modulus in the cross direction (dyn cm−2)


Young's modulus at angle θ to the machine direction (dyn cm−2)


Finite-width correction factor


Strain energy release rate (erg cm−2)


Critical strain energy release rate (erg cm−2)


Stress intensity factor (dyn cm−3/2)


Critical stress intensity factor (dyn cm−3/2)


Specimen length (cm)


Size of plastic zone (cm)


Work of fracture (erg cm−2)


Specimen thickness (cm)


Strain energy (erg)


Angle in the plane of the sheet measured from the machine direction


Specimen density (g cm−3)


Gross tensile stress at fracture (dyn cm−2)


Net tensile stress at fracture (dyn cm−2)


Tensile yield stress (dyn cm−2)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. R. Jones, Tappi 51 (1968) 203.Google Scholar
  2. 2.
    L. Nordman, “Fundamentals of Papermaking Fibres”, (edited by F. Bolam) (Tech. Sect. British Paper and Board Makers' Assoc., Kenley, 1958) p. 333.Google Scholar
  3. 3.
    D. H. Page and P. A. Tydeman, “The Formation and Structure of Paper”, (edited by F. Bolam) (Tech. Sect. British Paper and Board Makers' Assoc., London, 1962) p. 397.Google Scholar
  4. 4.
    G. R. Sears, R. F. Tyler and C. W. Denzer, Pulp Paper Mag. Can. 66 (1965) T351.Google Scholar
  5. 5.
    F. A. Macmillan, W. R. Farrell and K. G. Booth, Pulp Paper Mag. Can. 66 (1965) T361.Google Scholar
  6. 6.
    V. Balodis, Aust. J. Appl. Sci. 14 (1963) 284.Google Scholar
  7. 7.
    O. Andersson and O. Falk, Svensk Papperstid. 69 (1966) 91.Google Scholar
  8. 8.
    C. Gurney and J. Hunt, Proc. Roy. Soc. A 299 (1967) 508.Google Scholar
  9. 9.
    P. C. Paris and G. C. Sih, “Fracture Toughness Testing and its Applications”, STP 381 (ASTM, Philadelphia, 1965) p. 30.Google Scholar
  10. 10.
    G. R. Irwin, “Proceedings of the 7th Sagamore Ordnance Materials Research Conference” (Syracuse University Research Institute, August, 1960) p. IV-63, Met. E. 661-611/F.Google Scholar
  11. 11.
    G. R. Irwin, “Handbuch der Physik”, (edited by S. Flügge) Vol. 6 (Springer-Verlag, Berlin, 1958) p. 551.Google Scholar
  12. 12.
    G. C. Sih, P. C. Paris and G. R. Irwin, Int. J. Fracture Mech. 1 (1965) 189.Google Scholar
  13. 13.
    J. Glucklich, Engng. Fracture Mech. 3 (1971) 333.Google Scholar
  14. 14.
    Progress in Measuring Fracture Toughness and Using Fracture Mechanics: Fifth Report of a Special ASTM Committee, Materials Research and Standards 4 (1964) 107.Google Scholar
  15. 15.
    F. A. McClintock and G. R. Irwin, “Fracture Toughness Testing and its Applications”, STP 381 (ASTM, Philadelphia, 1965) p. 84.Google Scholar
  16. 16.
    J. E. Srawley and W. F. Brown, Jun., “Fracture Toughness Testing and its Applications”, STP 381 (ASTM, Philadelphia, 1965) p. 133.Google Scholar
  17. 17.
    C. L. Mantell (Ed.), “Engineering Materials Handbook”, (McGraw-Hill, New York, 1958) p. 1–40.Google Scholar
  18. 18.
    O. L. Bowie, J. Appl. Mech. 31 (1964) 208.Google Scholar
  19. 19.
    S. G. Lekhnitskii, “Theory of Elasticity of an Anisotropic Elastic Body” (Holden-Day, San Francisco, 1963) p. 41.Google Scholar
  20. 20.
    G. T. Hahn, M. F. Kanninen and A. R. Rosenfield, “Annual Review of Materials Science”, (edited by R. A. Huggins) Vol. 2 (Annual Reviews Inc., Palo Alto, 1972) p. 381.Google Scholar
  21. 21.
    H. G. Tattersall and G. Tappin, J. Mater. Sci. 1 (1966) 296.Google Scholar
  22. 22.
    R. J. Ferguson, G. P. Marshall and J. G. Williams, Polymer 14 (1973) 451.Google Scholar
  23. 23.
    H. J. Konish, Jun, J. L. Swedlow and T. A. Cruse, J. Composite Materials 6 (1972) 114.Google Scholar
  24. 24.
    C. D. Ellis and B. Harris, ibid 7 (1973) 76.Google Scholar
  25. 25.
    R. J. Sanford and F. R. Stonesifer, ibid 5 (1971) 241.Google Scholar

Copyright information

© Chapman and Hall Ltd 1974

Authors and Affiliations

  • R. S. Seth
    • 1
  • D. H. Page
    • 1
  1. 1.Pulp and Paper Research Institute of CanadaPointe ClaireCanada

Personalised recommendations