Skip to main content
Log in

Pyroelectricity and related properties in the fresnoite pseudobinary system Ba2TiGe2O8-Ba2TiSi2O8

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Complete solid solubility is found in the pseudobinary system Ba2TiGe2O8-Ba2TiSi2O8 by studies on ceramics and single crystals (Czochralski technique). The spontaneous birefringence perpendicular to the polar axis of the orthorhombic low temperature phase has been measured versus temperature and silicon contents: the temperature of the phase transition of species 4mmFmm2 is of second order and decreases from 1103 K at 0 at % Si to about 400 K at 40 at % Si. The pyroelectric coefficient in the orthorhombic mm2 and the tetragonal 4 mm phase is of the order of 10−6 C m−2 K−1 in the entire system and has a positive temperature coefficient for all compositions studied except for Ba2TiGe2O8, in which the pyroelectric coefficient changes sign at about 308 K. The spacegroup of the orthorhombic phase is proposed to be C 112v -Cmm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kimura, K. Utsumi and S. Nanamatsu, J. Appl. Phys. 47 (1976) 2249.

    Google Scholar 

  2. K. Aizu, Phys. Rev. B2 (1970) 754.

    Google Scholar 

  3. B. O. Hildmann, T. H. Hahn, L. E. Cross and R. E. Newnham, Appl. Phys. Lett. 27 (1975) 103.

    Google Scholar 

  4. B. O. Hildmann, Technische Hochschule Aachen (private communication) (1977).

  5. H. E. Swanson, National Bureau of Standards Monograph No. 25, Section 9 (1971) ASTM card No 22-513.

  6. R. Masse, J.-C. Grenier and A. Durif, Bull. Soc. Minéral Cristallogr. 90 (1967) 20.

    Google Scholar 

  7. R. Masse and A. Durif, ibid. (1967) 407.

    Google Scholar 

  8. L. E. Drafall and K. E. Spear, J. Cryst. Growth 33 (1976) 180.

    Google Scholar 

  9. J. Eckstein, K. Recker and F. Wallrafen, Naturwiss. 63 (1976) 435.

    Google Scholar 

  10. S., Haussühl, J. Eckstein, K. Recker and F. Wallrafen, J. Cryst. Growth 40 (1977) 200.

    Google Scholar 

  11. J. P. M. Damen, J. A. Pistorius and J. M. Robertson, Mater. Res. Bull. 12 (1977) 73.

    Google Scholar 

  12. P. Hartmann, editor, (North Holland, 1973) p. 235.

  13. B. R. Pamplin, “Crystal Growth” (Pergamon Press, Oxford 1975) p. 43.

    Google Scholar 

  14. M. Kimura, U. Fujino and T. Kawamura, Appl. Phys. Lett. 29 (1976) 227.

    Google Scholar 

  15. M. Kimura, K. Doi, S. Nanamatsu and T. Kawamura, ibid. 23 (1973) 531.

    Google Scholar 

  16. R. L. Byer and C. B. Roundy, Ferroelectrics 3 (1972) 333.

    Google Scholar 

  17. S. B. Lang, “Sourcebook of Pyroelectricity” (Gordon and Breach, New York, 1974).

    Google Scholar 

  18. S. N. Drozhdin, V. K. Novik, V. A. Kopsik and I. B. Kobiakov, Fiz. Tverd. Tela 16 (1974) 3266.

    Google Scholar 

  19. J.-P. Rivera, University of Geneva (private communication) (1977).

  20. J. P. Guha, J. Amer. Ceram. Soc. 60 (1977) 246.

    Google Scholar 

  21. E. Ascher, “Lattices of equi-translation subgroups of the space groups” (Battelle Institute, Advanced Studies Centre, Geneva, Switzerland, 1968).

    Google Scholar 

  22. J. Neubüser and H. Wondraschek, “Maximal subgroups of the space groups” (corrected 1977) (Kiel and Karlsruhe Universities, 1969).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, H., Genequand, P., Tippmann, H. et al. Pyroelectricity and related properties in the fresnoite pseudobinary system Ba2TiGe2O8-Ba2TiSi2O8 . J Mater Sci 13, 2257–2265 (1978). https://doi.org/10.1007/BF00541682

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00541682

Keywords

Navigation