Journal of Materials Science

, Volume 27, Issue 20, pp 5531–5535 | Cite as

Growth and characterization of Al2O3 insulator gate on p-InP and p-Si by metallorganic chemical vapour deposition at low temperatures

  • T. W. Kim
  • H. Lim
  • Y. D. Zheng
  • A. A. Reeder
  • B. D. Mccombe
Papers

Abstract

Metallorganic chemical vapour deposition of Al2O3 from Al(O-C3H7)3 via pyrolysis at low (∼280 °C) temperature was investigated with the goal of producing high quality Al2O3/p-InP (1 0 0) and Al2O3/p-Si (1 0 0) interfaces. Ellipsometer measurements of Al2O3 have determined the refractive index of the film to be about 1.55. Room temperature capacitance-voltage measurements were used to characterize the electrical properties of the structures after metal gate electrodes have been deposited. Low temperature conductance-voltage measurements were also carried out to investigate the quality of the Al2O3/InP interfaces. The interface state densities Al2O3/p-InP and Al2O3/p-Si determined from deep-level transient spectroscopy were approximately 1012 eV−1 cm−2 and 1011 eV−1 cm−2.

Keywords

Polymer Spectroscopy Al2O3 Refractive Index Pyrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. W. Wilmsen, “Physics and Chemistry of III–V Compound Semiconductor Interfaces”, (Plenum Press, New York, 1985).Google Scholar
  2. 2.
    N. Suzuki, T. Hariu and Y. Shibata, Appl. Phys. Lett. 33 (1978) 761.Google Scholar
  3. 3.
    L. Messick, Solid State Elec. 23 (1980) 551.Google Scholar
  4. 4.
    L. J. Messick, IEEE Trans. Electron Devices 28 (1981) 218.Google Scholar
  5. 5.
    T. Kawakami and M. Okamura, Electron. Lett. 15 (1979) 502.Google Scholar
  6. 6.
    P. V. Staa, H. Rombach and R. Kassing, J. Appl. Phys. 54 (1983) 4014.Google Scholar
  7. 7.
    L. Messick, ibid. 47 (1976) 4949.Google Scholar
  8. 8.
    L. G. Meiners, D. L. Lile and D. A. Collins, J. Vac. Sci. Technol. 16 (1979) 1458.Google Scholar
  9. 9.
    D. Fritzsche, Electron. Lett. 14 (1978) 51.Google Scholar
  10. 10.
    L. G. Meiners, J. Vac. Sci. Technol. 19 (1981) 373.Google Scholar
  11. 11.
    J. Woodward, D. C. Cameron, L. D. Irving and G. R. Jones, Thin Solid Films 85 (1981) 61.Google Scholar
  12. 12.
    R. F. C. Farrow, J. Phys. D 7 (1974) 2435.Google Scholar
  13. 13.
    P. N. Farennec, M. Le Contellec, H. L. Haridon, G. P. Pelous and J. Richard, Appl. Phys. Lett. 34 (1979) 807.Google Scholar
  14. 14.
    K. P. Pande, V. K. R. Nair and D. Gutierrez, J. Appl. Phys. 53 (1983) 5436.Google Scholar
  15. 15.
    T. Ando, A. B. Fowler and F. Stern, Rev. Mod. Phys. 54 (1982) 437.Google Scholar
  16. 16.
    M. Ishida, I. Katakabe, T. Nakamura and N. Ohtake, Appl. Phys. Lett. 52 (1988) 1326.Google Scholar
  17. 17.
    K. Sawada, M. Ishida, T. Nakamura and N. Ohtake, ibid. 52 (1988) 1673.Google Scholar
  18. 18.
    K. Char, D. K. Fork, T. H. Geballe, S. S. Laderman, R. C. Taber, R. D. Jacowitz, F. Bridges, G. A. N. Connell and J. B. Boyce, ibid. 56 (1990) 785.Google Scholar
  19. 19.
    M. Okamura and T. Kobayashi, Jpn. J. Appl Phys. 19 (1980) 2151.Google Scholar
  20. 20.
    A. G. Milnes and D. L. Feucht, “Heterojunctions and Metal-Semiconductor Junctions”, (Academic Press, New York, 1972)Google Scholar
  21. 21.
    P. Bogdanski, F. Murry and J. P. Piel, Solid State Commun. 64 (1987) 411.Google Scholar
  22. 22.
    S. M. Sze, “Physics of Semiconductor Devices,” 2nd Edn (John Wiley, New York, 1981)Google Scholar
  23. 23.
    V. Dolgopolov, C. Mazure, A. Zrenner and F. Koch, J. Appl. Phys. 55 (1984) 4280.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • T. W. Kim
    • 1
  • H. Lim
    • 2
  • Y. D. Zheng
    • 3
  • A. A. Reeder
    • 3
  • B. D. Mccombe
    • 3
  1. 1.Department of PhysicsKwangwoon UniversityNowon-Ku, SeoulKorea
  2. 2.Department of Electronics EngineeringAjou UniversitySuwonKorea
  3. 3.Department of Physics and AstronomyState University of New York at BuffaloUSA

Personalised recommendations