Advertisement

Journal of Materials Science

, Volume 27, Issue 20, pp 5470–5476 | Cite as

Hot dynamic consolidation of hard ceramics

  • Shi-Shyan Shang
  • K. Hokamoto
  • M. A. Meyers
Papers

Abstract

Diamond and cubic boron nitride powders were shock compacted at high temperature (873 and 973 K) by using a planar impact system at 1.2 and 2.0 km s−1. Silicon, graphite or a mixture of titanium and carbon powders were added to enhance the bonding of these superhard materials. Hot-consolidated specimens exhibited fewer surface cracks as compared with the specimens shock consolidated at room temperature. Diamond compacts having microhardness values over 55 GPa were obtained by subjecting porous mixtures of diamond crystals (4-8 μm) plus 15 wt% graphite (325 mesh) to an impact velocity of 1.2 km s−1 at 873 K. Well-consolidated c-BN samples, with microhardnesses (starting powders with 10–20 and 40–50 (μm) over 53 GPa were obtained.

Keywords

Polymer Silicon Titanium Graphite Boron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. K. Potter and T. J. Ahrens, Appl. Phys. Lett. 51 (1987) 317.Google Scholar
  2. 2.
    Idem., J. Appl. Phys. 63 (1988) 910.Google Scholar
  3. 3.
    S. Sawai and K. Kondo, J. Amer. Ceram. Soc. 71 (1988) C-185.Google Scholar
  4. 4.
    K. Kondo and S. Sawai, ibid. 72 (1989) 837.Google Scholar
  5. 5.
    T. Akashi and A. B. Sawaoka, J. Mater. Sci. 22 (1987) 3276.Google Scholar
  6. 6.
    Idem., ibid. 22 (1987) 1127.Google Scholar
  7. 7.
    “Proceedings of the First Workshop on Industrial Applications of Shock Processing of Powders”, CETR, New Mexico Institute of Mining and Technology, Socorro, NM, 1–3 June 1988, edited by M. A. Meyers and N. N. Thadhani.Google Scholar
  8. 8.
    “Proceedings of the Seminar on High Energy Rate Working of Rapidly Solidified Materials”, Novosibirsk, USSR, 10–14 October 1988.Google Scholar
  9. 9.
    A. Sawaoka (ed.), “Proceedings of the Second Workshop on Industrial Applications of Shock Processing of Materials”, Tokyo Institute of Technology, Japan, December 1988.Google Scholar
  10. 10.
    S. L. Wang, M. A. Meyers and A. Szecket, J. Mater. Sci. 23 (1988) 1786.Google Scholar
  11. 11.
    T. Taniguchi and K. Kondo, Adv. Ceram. Mater. 3 (1988) 399.Google Scholar
  12. 12.
    A. Ferreira, M. A. Meyers, N. N. Thadhani, S. N. Chang and J. R. Kough, Metall. Trans. 22 (1991) 685.Google Scholar
  13. 13.
    A. B. Sawaoka and T. Akashi, US Pat. 4 655 830(1987).Google Scholar
  14. 14.
    L. H. Yu, M. A. Meyers and N. N. Thadhani, J. Mater. Res. 5 (1990) 302.Google Scholar
  15. 15.
    Y. Horie, in “Shock Compression of Condensed Matter — (1989)”, edited by S. C. Schmidt, J. N. Johnson and L. W. Davison (Elsevier Science, North-Holland, 1990) p. 479.Google Scholar
  16. 16.
    T. Akashi and A. B. Sawaoka, Mater. Lett. 3 (1984) 11.Google Scholar
  17. 17.
    L. H. Yu and M. A. Meyers, private communication (1990).Google Scholar
  18. 18.
    K. Ichinose, M. Wakatsuki, T. Aoki and Y. Maeda, in “Proceedings of the 4th International Conference on High Pressure — 1974, Special Issue of the Review of Physical Chemistry of Japan”, edited by J. Osugi (Kawakita, Kyoto, 1975) p. 436.Google Scholar
  19. 19.
    L. F. Trueb, J. Appl. Phys. 30 (1968) 4707.Google Scholar
  20. 20.
    Idem., ibid. 42 (1971) 503.Google Scholar
  21. 21.
    D. G. Morris, Metal. Sci. 16 (1982) 457.Google Scholar
  22. 22.
    D. Raybould, Int. Powder Metall. Powder Technol. 16 (1980) 9.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Shi-Shyan Shang
    • 1
  • K. Hokamoto
    • 1
  • M. A. Meyers
    • 1
  1. 1.Materials Science ProgramUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations