Advertisement

Journal of Materials Science

, Volume 27, Issue 16, pp 4483–4488 | Cite as

Thermogravimetric studies of Y1Ba2Cu3O7−x superconductors

  • V. Sridharan
  • D. Ravi Chandran
  • S. Srinivasan
  • S. Sivasankaran
  • L. Giridharan
  • K. Suresh
  • T. Nagarajan
  • A. Raman
Papers

Abstract

The synthesis conditions and oxygen stoichiometry were determined using a thermogravimetric analyser. The kinetics of oxygenation at different temperatures and at different atmospheres were studied. The oxygenation kinetics were found to be sensitive to porosity of the material. The appropriate oxygenation temperature was found to be 400 °C. For oxygenation temperatures below 400 °C, the oxygenation occurs by a nucleation and growth process, whereas for higher temperatures it is diffusion limited.

Keywords

Oxygen Polymer Atmosphere Porosity Thermogravimetric Analyser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Bednorz and K. A. Müller, Z. Phys. B 64 (1986) 189.Google Scholar
  2. 2.
    M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang and C. W. Chu, Phys. Rev. Lett. 58 (1987) 908.Google Scholar
  3. 3.
    J. D. Jorgensen, D. G. Hinks, L. Soderholm, K. J. Volin, R. Hitterman, J. D. Grace, I. K. Schuller, C. V. Segre, K. Zhang and M. S. Klecfisch, Phys. Rev. B 36 (1987) 3608.Google Scholar
  4. 4.
    R. J. Cava, B. Batlogg, C. H. Chen, E. A. Rietman, S. M. Zahurak and D. Weder, ibid. 36 (1987) 5719.Google Scholar
  5. 5.
    D. C. Harris and T. A. Hewston, J. Solid State Chem. 69 (1987) 182.Google Scholar
  6. 6.
    E. H. Appelman, L. R. Morss, A. M. Kini, U. Geisser, A. Umezawa, G. W. Crabtree and K. D. Carlson, J. Inorg. Chem. 26 (1987) 3237.Google Scholar
  7. 7.
    J. M. Tarascon and B. G. Bagley, MRS Bull. January (1989) 53.Google Scholar
  8. 8.
    M. G. Langer and R. A. Dichiara, Thermochim. Acta 133 (1988) 32.Google Scholar
  9. 9.
    S. Jantsch, J. Ihringer, J. K. Maichle, W. Prandl, S. Kemmler-Sack, R. Kieimel, S. Losch, W. Schafee, M. Schlichenmaier and A. W. Hewat, J. Less Common Metals 150 (1989) 167.Google Scholar
  10. 10.
    H. M. O'bryan and P. K. Gallagher, J. Mater. Res. 3 (1988) 619.Google Scholar
  11. 11.
    N. McN Alford, W. J. Clegg, M. A. Harmer, J. D. Bridall, K. Kendall and D. H. Jones, Nature 332 (1988) 58.Google Scholar
  12. 12.
    C. Weast and M. J. Astle, “CRC Handbook of Chemistry and Physics” (CRC Press, Florida, 1981).Google Scholar
  13. 13.
    F. Licci, P. Tissot and H. J. Scheel, J. Less Common Metals 150 (1989) 210.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • V. Sridharan
    • 1
  • D. Ravi Chandran
    • 1
  • S. Srinivasan
    • 1
  • S. Sivasankaran
    • 1
  • L. Giridharan
    • 1
  • K. Suresh
    • 1
  • T. Nagarajan
    • 1
  • A. Raman
    • 2
  1. 1.Materials Science CentreUniversity of MadrasMadrasIndia
  2. 2.Department of Mechanical EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations