Skip to main content
Log in

Preparation and characterization of Zn3P2-Cd3P2 solid solutions

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solid solutions of Zn3P2-Cd3P2 systems of the type (ZnxCd1−x)3P2 have been prepared by direct reaction of the constituent elements (Zn, Cd, P) for values of x equal to 0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0. X-ray diffraction data indicate that all the systems crystallize in tetragonal (α) phase only, exhibiting preferred orientation along the (220) and (224) directions. The lattice parameters, a and c, and the interplanar spacing, d, vary linearly with x, obeying Vegard's law. The systems show minimum conductivity at room temperature for composition corresponding to x values in the range 0.4–0.6. Electrical conductivity for all systems is measured in the temperature range 100–450 K. In view of the estimated (low) values of the activation energy the conduction process in the different temperature regions has been attributed to the presence of shallow trapping levels in the systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Catalano, V. Dalal, E. A. Fagen, R. B. Hall, J. V. Masi, J. D. Meakin, G. Warfield and A. M. Barnet, in “Proceedings of Photovoltaic Solar Energy Conference”, Luxembourg, 27–30 September 1977, edited by R. Van Overstraeten and W. Palz (Reidel, Dordrecht, Holland, 1978) p. 644.

    Google Scholar 

  2. A. Möller, U. Elrod, P. Munz, J. Honigschmidt, C. Clemen and E. Bucher, in “Proceedings of the International Conference on the Physics of Semiconductors”, Edinburgh, edited by B. L. H. Wilson, Institute of Physics Conference Series No. 43 (Institute of Physics, London, 1978) p. 825.

    Google Scholar 

  3. S. G. Bishop, W. J. Moore and E. M. Swiggard, Appl. Phys. Lett. 16 (1970) 459.

    Article  CAS  Google Scholar 

  4. E. A. Fagen, J. Appl. Phys. 50 (1979) 6505.

    Article  CAS  Google Scholar 

  5. K. R. Murali, PhD thesis, Indian Institute of Technology, Kharagpur (1980).

    Google Scholar 

  6. F. C. Wang, R. H. Bube and R. S. Feigelson, J. Crystal Growth 55 (1981) 268.

    Article  CAS  Google Scholar 

  7. M. Bhusan and A. Catalano, Appl. Phys. Lett. 38 (1) (1981) 39.

    Article  Google Scholar 

  8. R. Juza and K. Bär, Z. Anorg. Allg. Chem. 283 (1956) 230.

    Article  CAS  Google Scholar 

  9. K. Masumoto, S. Isomura and K. Sasaki, Phys. Status Solidi (a) 6 (1971) 515.

    Article  CAS  Google Scholar 

  10. ASTM X-Ray “Powder Diffraction File”, Sets 1–5, 20–25, Inorganic Volume, PD IS-5i RD & 25i RD. File nos. 22–1021 (Zn3P2) & 2–1182 (Cd3P2), 1974, edited by L. G. Berry (American Society for Testing and Materials, Philadelphia, Pennsylvania).

    Google Scholar 

  11. J. Berak and Z. Pruchnik, Roczniki Chemii Ann. Soc. Chim. Polon. 45 (1971) 1425.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, D.R., Nayak, A. Preparation and characterization of Zn3P2-Cd3P2 solid solutions. J Mater Sci 27, 4389–4392 (1992). https://doi.org/10.1007/BF00541571

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00541571

Keywords

Navigation