Skip to main content
Log in

Internal and effective stresses in high-temperature creep evaluated from transient dip tests and dislocation bowing

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Because creep of metals and alloys is modelled on the basis of microstructural observations, it has been shown that there is a difference between the mathematical treatment of high-temperature deformation and the real material behaviour. One idea to consider is to split the applied stress into a part depending on the substructure (the internal stress which has to be reached to start dislocation motion) and a part describing the resistance to the glide motion of dislocations (the effective stress). For ferritic chromium steel these quantities have been measured by means of the stress transient dip test technique. This leads to mean values of internal and effective stresses for the whole specimen. Additionally, local stresses acting on individual dislocations are evaluated from dislocation bowing for a wide range of applied stresses. The results show that the ratio of internal to applied stress decreases with increasing applied stresses, which, on the other hand, causes a large increase of effective stresses. Dislocation bowing stresses show a similar dependence. Compared to the results of dip tests, the determination of local stresses leads to less accurate results and to a large deviation of results within small regions of one specimen. Therefore, it is only valuable for comparison purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Blum, Z. Metallkde 68 (1977) 484.

    CAS  Google Scholar 

  2. W. D. Nix and B. Ilschner, in “Proceedings of the 5th International Conference on the Strength of Metals and Alloys”, Vol. 3, Aachen, August 1979, edited by P. Haasen, V. Gerold and G. Kostorz (Pergamon, Oxford, 1979) p. 1503.

    Google Scholar 

  3. H. J. Frost and M. F. Ashby, in “Deformation Mechanism Maps, The Plasticity and Creep of Metals and Ceramics” (Pergamon, Oxford, 1982).

    Google Scholar 

  4. D. Caillard, Mater. Sci. Engng 81 (1986) 349.

    Article  CAS  Google Scholar 

  5. M. Biberger and W. Blum, Scripta Metall. 23 (1989) 1419.

    Article  CAS  Google Scholar 

  6. F. Groisböck and R. Ebner, Z. Metallkde, 82 (1991) 435.

    Google Scholar 

  7. F. Groisböck, Doctoral thesis, Leoben (1990).

  8. S. Takeuchi and A. S. Argon, J. Mater. Sci. 11 (1976) 1542.

    Article  CAS  Google Scholar 

  9. F. Groisböck, R. Ebner and F. Jeglitsch, in “Proceedings of the 1st International Conference on Advanced Materials and Processing”, Aachen, November 1989, edited by H. E. Exner and V. Schumacher (DGM Informationsgesellschaft mbH, Oberursel, 1990), p. 579.

    Google Scholar 

  10. J. Cadek, Mater. Sci. Engng 94 (1987) 79.

    Article  CAS  Google Scholar 

  11. S. U. An, H. Wolf, S. Vogler and W. Blum, in “Proceedings of the 4th International Conference on Creep and Fracture of Engineering Materials and Structures”, Swansea, April 1990, edited by B. Wilshire and R. W. Evans (Institute of Metals, London, 1990), p. 81.

    Google Scholar 

  12. A. A. Solomon, Rep. Sci. Instrum. 40 (1969) 1025.

    Article  Google Scholar 

  13. C. N. Ahlquist and W. D. Nix, Scripta Metall. 3 (1969) 679.

    Article  Google Scholar 

  14. J. J. Urcola and C. M. Sellars, Acta Metall. 35 (1987) 2659.

    Article  CAS  Google Scholar 

  15. K. Toma, H. Yoshinaga and S. Morozumi, Trans. Jpn Inst. Metals 17 (1976) 102.

    Article  Google Scholar 

  16. W. Blum and E. Weckert, Mater. Sci. Engng 86 (1987) 145.

    Article  CAS  Google Scholar 

  17. F. Groisböck and R. Danzer, Z. Metallkde, 82 (1991) 519.

    Google Scholar 

  18. F. Dobes, Acta. Metall. 28 (1980) 377.

    Article  CAS  Google Scholar 

  19. J. Friedel, in “Dislocations” (Addison Wesley, Reading, MA, 1964), Ch. 16.

    Google Scholar 

  20. J. Friedel, in “Electron Microscopy and Strength of Crystals”, edited by G. Thomas and J. Washburn (Interscience, 1963) p. 605.

  21. L. P. Kubin and J.-L. Martin, in “Proceedings of the 5th International Conference on the Strength of Metals and Alloys”, Vol. 3, Aachen, August 1979, edited by P. Haasen, V. Gerold and G. Kostorz (Pergamon, Oxford, 1979) p. 1639.

    Google Scholar 

  22. F. Groisböck, J. Mater. Sci. 27 (1992) 4373.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groisböck, F., Jeglitsch, F. Internal and effective stresses in high-temperature creep evaluated from transient dip tests and dislocation bowing. J Mater Sci 27, 4365–4372 (1992). https://doi.org/10.1007/BF00541568

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00541568

Keywords

Navigation