Skip to main content
Log in

Theoretical considerations of thermally stimulated discharge techniques in amorphous semiconductors

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermally stimulated discharge of a previously polarized and electroded dielectric, can generate a current with several peaks. The locations of the peaks along the thermally stimulated discharge current spectrum are characteristics of the particular mechanisms for the decay. Systematic analysis of the current peaks will yield information such as dipole relaxation characteristics and activation energies for intrinsic conduction or trapping parameters of electronic charges in the dielectric. When multilayer dielectrics such as amorphous semiconductor photoreceptors are subjected to an electret formation cycle, the heterogeneity in their structures may cause several polarization effects. For example, discontinuities in the intrinsic conductivities and dielectric constant in amorphous selenium (a-Se)-based multilayer photoreceptors can lead to the accumulation of space charges at the interfaces of the individual layers whenever the device experiences an electric stress for a period of time which is of the order of its effective dielectric relaxation time. Charge trapping by states associated with the heterogeneities of the structure cause an electrical polarization which can have a significant impact on the xerographic performance of the photoreceptor. The purpose of the present series of papers is firstly to describe the principles of thermally stimulated discharge techniques, the associated theories and interpretation of the current spectrum and secondly, to discuss applications of these techniques to a-Se:Te/Se double layer photoreceptors. The principles of thermally stimulated discharge and relevant theories are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Vaezi-Nejad and C. Juhasz, J. Mater Sci. 23 (1988) 3286.

    Article  CAS  Google Scholar 

  2. Idem, ibid. 23 (1988) 3387.

    Article  CAS  Google Scholar 

  3. Idem, ibid. 24 (1989) 471.

    Article  CAS  Google Scholar 

  4. M. Eguchi Phil. Mag. 49 (1925) 179.

    Article  Google Scholar 

  5. G. M. Sessler and J. E. West, J. Electrost. 1 (1975) 111.

    Article  CAS  Google Scholar 

  6. G. M. Sessler (Ed.), “Electicets”, Topics in Applied Physics, Vol. 33, (Springer, Berlin, Heidelberg, 1980).

    Google Scholar 

  7. R. A. Street and A. D. Yoffe, Thin Sol. Films. 11 (1972) 161.

    Article  CAS  Google Scholar 

  8. G. Guilland, J. Fornazero and M. Maitrot, J. Appl. Phys. 48 (1977) 3428.

    Article  Google Scholar 

  9. Y. Hoshino and H. Mijata, ibid. 52 (1981) 6214.

    Article  CAS  Google Scholar 

  10. S. Mascarenhas, in “Electicets”, Topics in Applied Physics, Vol. 33, edited by G. M. Sessler (Springer, Berlin, Heidelberg, 1980) Ch. 6.

    Google Scholar 

  11. G. M. Sessler and J. E. West, J. Acoust. Soc. Amer. 40 (1966) 1433.

    Article  Google Scholar 

  12. R. M. Schaffert, “Electrophotography” (Wiley, New York, 1975).

    Google Scholar 

  13. J. Van Turnhout in “Electicets, charge storage and transport in dielectrics”, edited by M. M. Perlman (Electrochemical Society, Princeton, NJ, 1973) p. 230.

    Google Scholar 

  14. Idem. “Thermally stimulated Discharge of Polymer Electicets” (Elsevier, Amsterdam, 1975).

    Google Scholar 

  15. J. H. Calderwood and B. K. Scaife, Phil. Trans R. Soc. 269 (1970) 217.

    Article  Google Scholar 

  16. B. Gross, in “Electicets”, Topics in Applied Physics, Vol. 33, edited by G. M. Sessler (Springer, Berlin, Heidelberg, New York, 1980 Ch 1.

    Google Scholar 

  17. G. F. Leal Ferreira and B. Gross, J. Non-Metals 1 (1973) 129.

    Google Scholar 

  18. G. F. Leal Ferreira ibid. 2 (1974) 129.

    Google Scholar 

  19. R. A. Creswell and M. M. Perlman, J. Appl. Phys. 41 (1970) 2365.

    Article  CAS  Google Scholar 

  20. G. M. Sessler and J. E. West, ibid. 47 (1976) 3480.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juhasz, C., Kamarulzaman, B.M.Z. & Vaezi-Nejad, S.M. Theoretical considerations of thermally stimulated discharge techniques in amorphous semiconductors. J Mater Sci 27, 4305–4310 (1992). https://doi.org/10.1007/BF00541557

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00541557

Keywords

Navigation