Skip to main content
Log in

Influence of some alloying elements on decomposition of a Co-3wt% Ti alloy

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of minor alloying additions (La, Fe and Nb) on the decomposition behaviour of a Co-3 wt%Ti alloy is discussed. Optical microscopy coupled with electron microscopy and diffraction have aided in elucidating the microstructural evolution in these alloys. The solid solutions of binary and ternary alloys decomposed on ageing by the spinodal mode. The different stages of coarsening of the precipitates are discussed, as are kinetics and morphological changes during precipitation of binary and ternary alloys. After long ageing times, discontinuous precipitation set in. The discontinuous product is close to equilibrium and is considered to be driven by the difference between coherent and incoherent equilibria in these systems. Coherent precipitation occurred by volume diffusion whereas incoherent precipitation reactions were determined by grain-boundary diffusion. The microstructural evolution has been correlated with the observed variation in hardness and yield strength at different stages of decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T s :

Critical temperature for coherent spinodal decomposition

λ:

Wavelength of modulations

K :

Rate constant

γ:

Interfacial energy

ρ:

Density of alloy

W :

Weight fraction

M :

Atomic weight

V m :

Molar volume of Co3Ti

a :

Lattice parameter of matrix

N :

Avogadro's number

a p :

Lattice parameter of precipiate

Δa :

Mismatch lattice parameter

S :

Size of precipitate for loss of coherency

V v :

Volume fraction of precipitate

t :

Foil thickness

V v′ :

Apparent volume fraction

D :

Measured precipitate size

C e :

Solvus composition

A :

Constant

B :

Constant

A :

Amplitude of modulation

n :

Distortion parameter

Y :

Young's modulus

b :

Burgers vector

β:

Wave vector

σc :

Critical resolved shear stress

Z :

Spacing of misfit dislocations

a ss :

Lattice parameter of solid solution

C :

Concentration in atomic fraction

b 0 :

Constant

b 1 :

Constant

b 2 :

Constant

YS:

Yield strength

D b :

Grain-boundary diffusivity

D v :

Volume diffusivity

p chem :

Chemical driving force

X 0 :

Composition of supersaturated alloy

X e :

Equilibrium concentration

V :

Growth velocity

b :

Interatomic distance

f :

Fraction of driving force

ΔG :

Gibb's free energy

n :

Misfit parameter

F :

Traction force

r 0 :

Radius of lamellar rods

N :

Number of rods per unit area

G :

Growth of discontinuous precipitation (cell)

X m :

Matrix composition ahead of interface

X β :

Composition of second phase (Co3Ti)

Q :

Activation energy

Γ:

Effective thickness of boundary

References

  1. E. Diderrich, J. M. Drapier, D. Coutsrdis and L. Habraken, Cobalt 1 (1975) 7.

    Google Scholar 

  2. D. M. Davies and B. Ralph, J. Microscopy 96 (1972) 987.

    Article  Google Scholar 

  3. A. J. Ardell and R. B. Nicholson, Acta Metall. 14 (1966) 1295.

    Article  CAS  Google Scholar 

  4. R. W. Fountain and W. D. Forgeng, Trans. TMS-AIME 215 (1959) 998.

    CAS  Google Scholar 

  5. R. W. Fountain, G. M. Faulring and W. D. Forgeng, ibid. 221 (1961) 747.

    CAS  Google Scholar 

  6. H. Bibring and J. Manenc, Compt. Rend. Acad. Sci. Paris 249 (1959) 1508.

    CAS  Google Scholar 

  7. Ye. K. Zakharov and B. G. Lifschitz, English Abstracts of Selected Articles from Soviet Block and Mainland China Technical Journals, Series IIIm (1960).

  8. A. L. Berezina and K. V. Chuistov, Phy. Met. Metallogr. 22(3) (1966) 84.

    Google Scholar 

  9. Idem., ibid. 27(2) (1969) 189.

    Google Scholar 

  10. O. Ye. Tkachenko and K. V. Chuistov, ibid. 29(4) (1972) 159.

    Google Scholar 

  11. M. I. Zakharova and N. A. Vasil'yeva, ibid. 33(5) (1972) 119.

    Google Scholar 

  12. M. N. Thompson, PhD thesis, University of Cambridge, UK (1971).

    Google Scholar 

  13. M. N. Thompson and J. W. Edington, “Microscopie Electronique”, Vol. 2 (Favart, Paris, 1970) p. 545.

    Google Scholar 

  14. Idem. in “Second International Conference on the strength of Metals and Alloys”, Asilomar, CA (1971) p. 1150.

  15. J. M. Blaise, P. Viatour and J. M. Drapier, Cobalt 49 (1970) 192.

    CAS  Google Scholar 

  16. B. J. Piearcey, R. Jackson and B. B. Argent J. Inst. Met. 91 (1962) 257.

    Google Scholar 

  17. D. E. Laughlin and J. W. Cahn, Acta Metall. 23 (1975) 329.

    Article  CAS  Google Scholar 

  18. P. E. J. Flewitt, ibid. 22 (1974) 47.

    Article  CAS  Google Scholar 

  19. J. Singh, C. M. Wayman, J. Mazumder, S. Ranganathan and S. Lele, Met. Trans. A19 (1988) 1703.

    Article  Google Scholar 

  20. H. Kubo and C. M. Wayman, ibid. A10 (1979) 633.

    Article  Google Scholar 

  21. F. H. Wohlbier (Ed.), “Diffusion and Defect Data”, Vol. 13 (Trans. Tech. Publ., Aedermannsdorf, Switzerland, 1976) p. 34.

    Google Scholar 

  22. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19 (1961) 35.

    Article  Google Scholar 

  23. C. Wagner, Z. Electrochem. 65 (1961) 581.

    CAS  Google Scholar 

  24. A. J. Ardell, Met. Trans. 1 (1970) 525.

    Article  CAS  Google Scholar 

  25. W. B. Pearson, “The Crystal Chemistry and Physics of Metals and Alloys” (Wiley Interscience, New York, 1972). p. 151.

    Google Scholar 

  26. B. G. Lefevre, A. T. D'Annessia and D. Kalish, Met. Trans. A9 (1978) 577.

    Article  Google Scholar 

  27. L. H. Schwarts and J. T. Plewes, Acta Metall. 22 (1974) 911.

    Article  Google Scholar 

  28. J. W. Cahn, ibid. 14 (1966) 477.

    Article  CAS  Google Scholar 

  29. W. Gust, B. Predel and Tat. T. Nguyen, Z. Metallkde 67 (1976) 10.

    Google Scholar 

  30. J. W. Chan, Acta Metall. 11 (1963) 1275.

    Article  Google Scholar 

  31. N. F. Mott and F. R. N. Nabarro, Proc. Phys. Soc. 52 (1940) 86.

    Article  CAS  Google Scholar 

  32. E. Orowan, in “Symposium on Internal Stresses in Metals and Alloys” (Institute of Metals, London, 1948) p. 451.

    Google Scholar 

  33. R. J. Livak and G. Thomas, Acta Metall. 19 (1971) 497.

    Article  CAS  Google Scholar 

  34. S. D. Dahlgren, Met. Trans. A8 (1977) 347.

    Article  Google Scholar 

  35. R. I. Saunderson, P. Wilkes and G. M. Lorimer, Acta Metall. 26 (1978) 1357.

    Article  CAS  Google Scholar 

  36. J. Singh and G. R. Purdy, J. Mater. Sci. 22 (1987) 2918.

    Article  CAS  Google Scholar 

  37. I. G. Solorzano and G. R. Purdy, Met. Trans. A15 (1984) 1055.

    Article  Google Scholar 

  38. D. A. Porter and J. Edington, Proc. R. Soc. 358A (1977) 335.

    Google Scholar 

  39. A. Pervoic and G. R. Purdy, Acta Metall. 29 (1982) 53.

    Article  Google Scholar 

  40. M. Hillert, Met. Trans. 3 (1972) 2729.

    Article  CAS  Google Scholar 

  41. K. N. Tu and D. Turnbull, Acta Metall. 15 (1967) 369.

    Article  CAS  Google Scholar 

  42. R. A. Fournelle and J. B. Clark, Met. Trans. 3 (1972) 2757.

    Article  CAS  Google Scholar 

  43. N. Lange and G. R. Purdy, “Report of Royal Institute Technology”, Stockholm (1967).

  44. D. B. Williams and E. P. Butler, Int. Met. Rev. 26 (1981) 153.

    Article  CAS  Google Scholar 

  45. C. Zener, Trans. AIME 167 (1946) 550.

    Google Scholar 

  46. H. I. Aaronson and J. B. Clark, Acta Metall. 16 (1968) 845.

    Article  CAS  Google Scholar 

  47. D. Turnbull, ibid. 3 (1955) 55.

    Article  CAS  Google Scholar 

  48. Y. C. Liu and H. I. Aaronson, ibid. 16 (1968) 1343.

    Article  CAS  Google Scholar 

  49. M. Korchynsky and R. W. Fountain, Trans. Met. Soc. AIME 215 (1959) 1033.

    Google Scholar 

  50. H. Tsukakino and R. Nozato, J. Mater. Sci. 19 (1984) 3013.

    Article  Google Scholar 

  51. J. Singh, S. Lele and S. Ranganathan, J. Mater. Sci. 15 (1980) 2010.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, J., Suryanarayana, C. Influence of some alloying elements on decomposition of a Co-3wt% Ti alloy. J Mater Sci 27, 4261–4281 (1992). https://doi.org/10.1007/BF00541552

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00541552

Keywords

Navigation