Advertisement

Journal of Materials Science

, Volume 10, Issue 7, pp 1127–1136 | Cite as

The effect of polymerization conditions and crystallinity on the mechanical properties and fracture of spherulitic nylon 6

  • T. J. Bessell
  • D. Hull
  • J. B. Shortall
Papers

Abstract

The molecular and structural parameters controlling the mechanical properties, deformation and fracture of spherulitic nylon 6 have been investigated. The nylon was prepared by the anionic polymerization of ε-caprolactam and the polymerization conditions were varied to give samples having a range of spherulite diameter, molecular weight and degree of crystallinity. The tensile properties and fracture mode of the nylon varied considerably with degree of crystallinity and polymerization temperature. High crystallinity and low polymerization temperatures below 423 K gave a brittle material. Polymerization above 423 K resulted in a ductile material which showed a yield drop. In this material final fracture was preceded by the formation of inter and trans spherulitic cracks which coalesced to form a large cavity that led to final failure. In nylon having a low degree of crystallinity, fracture was fibrillar in nature and occurred by the ductile drawing of the material to strains greater than 250%.

Keywords

Polymerization Mechanical Property Brittle Nylon Tensile Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. I. Vincent, Plastics 28 (1963) 107.Google Scholar
  2. 2.
    K. J. O'Leary, Ph.D. Thesis, Case Western Reserve University (1967).Google Scholar
  3. 3.
    H. W. Starkweather, G. E. Moore, J. E. Harrison, T. M. Roder and R. E. Brooks, J. Polymer Sci. 21 (1956) 189.Google Scholar
  4. 4.
    H. W. Starkweather and R. E. Brooks, J. Appl. Polymer Sci. 1 (1959) 236.Google Scholar
  5. 5.
    J. Vanschooten, M. Van Hoorn and J. Boerma, Polymer 2 (1961) 161.Google Scholar
  6. 6.
    L. S. Remaly and J. M. Schultz, J. Appl. Polymer Sci. 14 (1970) 1871.Google Scholar
  7. 7.
    M. D. Keith, F. J. Padden and G. R. Vadimsky, J. Polymer Sci. A2 4 (1966) 267.Google Scholar
  8. 8.
    M. D. Keith and F. J. Padden, J. Appl. Phys. 35 (1964) 1270.Google Scholar
  9. 9.
    F. P. Price and R. W. Kilb, J. Polymer Sci. 57 (1962) 395.Google Scholar
  10. 10.
    R. J. Samuels, J. Macromol. Sci. Phys. B 4 (1970) 701.Google Scholar
  11. 11.
    T. Oda, S. Nomura and M. Kawai, J. Polymer Sci. A 3 (1965) 1943.Google Scholar
  12. 12.
    K. J. O'Leary and P. H. Geil, J. Macromol. Sci. Phys. B 2 (1968) 261.Google Scholar
  13. 13.
    M. Bevis and P. Allan, “Surface and Defect Properties of Solids”, Vol. 3. (Specialist Periodical Reports, The Chemical Society, 1974) Ch.3,Google Scholar
  14. 14.
    J. L. Way and J. R. Atkinson, J. Mater. Sci. 6 (1971) 102.Google Scholar
  15. 15.
    Idem, ibid 7 (1972) 1345.Google Scholar
  16. 16.
    G. B. Gechele and G. Stea, Europ. Polymer J. 1 (1965) 91.Google Scholar
  17. 17.
    T. Bessell and J. B. Shortall, ibid 8 (1972) 991.Google Scholar
  18. 18.
    H. G. Killian, Kolloid Z. 176 (1961) 49.Google Scholar
  19. 19.
    A. Muller and P. Pfluger, Plastics 24 (1959) 350.Google Scholar
  20. 20.
    T. W. Owen and D. Hull, Polymer 14 (1973) 476.Google Scholar
  21. 21.
    P. H. Harris and J. H. Magill, J. Polymer Sci. 54 (1961) 547.Google Scholar
  22. 22.
    D. R. Holmes, C. W. Bunn and D. J. Smith, ibid 17 (1955) 159.Google Scholar
  23. 23.
    A. Keller, ibid 17 (1955) 351.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1975

Authors and Affiliations

  • T. J. Bessell
    • 1
  • D. Hull
    • 1
  • J. B. Shortall
    • 1
  1. 1.Department of Metallurgy and Materials ScienceUniversity of LiverpoolUK

Personalised recommendations