Journal of Materials Science

, Volume 11, Issue 1, pp 97–110 | Cite as

The mechanics of stretch-graphitization of glassy carbon fibres

  • H. M. Hawthorne


The mechanics of stretch-graphitization of glassy carbon fibres made from two pitch precursors was studied by determining the plastic deformation characteristics of monofilaments during their elongation to 50% strain in a continuous apparatus. By monitoring fibre tension under various processing conditions and analysing deformation profiles quenched into extending fibres, the temperature and strain-rate dependence of induced fibre stresses has been obtained. Over the temperature range 2200 to 3000° C and strainrate range 3.0×10−4 to 2.5×10−1 sec−1, tensile stresses in the glassy carbon fibres ranged from 7000 to 50 000 psi. The deformation can be described by the empirical equation \(\dot \varepsilon = A\sigma ^n \) exp (− ΔH/RT), where A is a constant, n=8.6±1 and ΔH ∼ 290±50 kcal mole−1, independent of temperature and strain-rate, for both fibre types. The apparent activation energy is consistent with the controlling operation of a microfibrillar reorientation process, accompanied by atomic diffusion (ordering). The high strain-rate stress dependence, indicating an apparent activation volume ∼ 4000 Å3, also suggests a molecular-scale rate-limiting process. Results are compared with those of various high temperature processes in carbonaceous solids and deformation in organic polymers and it is suggested that stretch-graphitization can be considered analogous to the affine drawing of amorphous polymer fibres.


Carbon Fibre Glassy Carbon Stress Exponent Fibre Tension High Temperature Plastic Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Yamada, D.C.I.C. Report 68-2 (1968) U.S. Defence Documentation Centre, Virginia.Google Scholar
  2. 2.
    G. M. Jenkins, K. Kawamura and L. L. Ban, Proc. Roy. Soc. (London) A327 (1972) 501.Google Scholar
  3. 3.
    S. Otani, Carbon 4 (1966) 425.CrossRefGoogle Scholar
  4. 4.
    H. M. Hawthorne, C. Baker, R. H. Bentall and K. R. Linger, Nature 227 (1970) 946 (also Can. Patent 903444, June 1972).CrossRefGoogle Scholar
  5. 5.
    S. Otani, Y. Kobuko and T. Koitabashi, Bull. Chem. Soc. Japan 43 (1970) 3291.CrossRefGoogle Scholar
  6. 6.
    R. Bacon, A. A. Pallozzi and S. E. Slosarik, Proceedings of the S.P.I. 21st Technical Conference (1966) Section 8E.Google Scholar
  7. 7.
    J. W. Johnson, J. R. Marjoram and P. G. Rose, Nature 221 (1969) 357.CrossRefGoogle Scholar
  8. 8.
    W. Johnson, Proceedings of the 3rd Conference Industrial Carbons and Graphite, S.C.I., London (1970) p. 447.Google Scholar
  9. 9.
    R. Bacon, “Chemistry and Physics of Carbon” Vol. 9, edited P. L. Walker Jun. (Marcel Dekker, New York, 1973) p. 1–102.Google Scholar
  10. 10.
    H. M. Hawthorne, Proceedings of the 1st International Carbon Fibre Conference, London (1971) (Plastics & Polymers Conf. Supplement no. 5) p. 81.Google Scholar
  11. 11.
    S. Otani, S. Watanabe, H. Ogino, K. Iijima and T. Koitabashi, Bull. Chem. Soc. Japan 45 (1972) 3701.Google Scholar
  12. 12.
    W. N. Reynolds, “Physical Properties of Graphite” (Elsevier, London, 1968).Google Scholar
  13. 13.
    E. G. Zukas and W. V. Green, Carbon 6 (1968) 101.CrossRefGoogle Scholar
  14. 14.
    D. B. Fischbach, ibid 9 (1971) 193.CrossRefGoogle Scholar
  15. 15.
    Idem, “Chemistry and Physics of Carbon” Vol. 7, edited by P. L. Walker Jun. (Marcel Dekker, New York, 1971).Google Scholar
  16. 16.
    H. M. Hawthorne, unpublished results.Google Scholar
  17. 17.
    A. A. Khomenko, Yu. E. Smirnov, V. P. Sosedov and V. L. Kasatochkin, Dokl. Akad. Nauk. SSSR 206 (1972) 1112 (Sov. Phys. Dokl. 17 (1973) 956).Google Scholar
  18. 18.
    C. D. Wignall and C. J. Pings, Carbon 12 (1974) 51.CrossRefGoogle Scholar
  19. 19.
    M. Nakamizo, R. Kammereck and P. L. Walker Jun., ibid 12 (1974) 259.CrossRefGoogle Scholar
  20. 20.
    A. G. Whittaker and B. Tooper, J. Amer. Ceram. Soc. 57 (1974) 443.CrossRefGoogle Scholar
  21. 21.
    R. R. Saxena and R. H. Bragg, Carbon 12 (1974) 211.CrossRefGoogle Scholar
  22. 22.
    A. Fourdeux, C. Hérinckx, R. Perret and W. Ruland, Compt. Rend. 269C (1969) 1597.Google Scholar
  23. 23.
    T. G. Langdon, Nature Phys. Sci. 236 (1972) 60.Google Scholar
  24. 24.
    F. Bueche, “Physical Properties of Polymers” (Interscience, New York, 1962).Google Scholar
  25. 25.
    O. Ishai, J. Appl. Polymer. Sci. 11 (1967) 1863.CrossRefGoogle Scholar
  26. 26.
    R. E. Robertson, ibid 7 (1963) 443.CrossRefGoogle Scholar
  27. 27.
    O. Ishai, ibid 11 (1967) 963.CrossRefGoogle Scholar
  28. 28.
    A. S. Argon, Phil. Mag. 28 (1973) 839.Google Scholar
  29. 29.
    R. E. Robertson, J. Chem. Phys. 44 (1966) 3950.CrossRefGoogle Scholar
  30. 30.
    G. S. Y. Yeh, J. Macromol. Sci. B6 (1972) 465.Google Scholar
  31. 31.
    R. Bacon and W. H. Smith, Proceedings of the 2nd Conference on Industrial Carbons and Graphite, S.C.I., London (1965) p. 1.Google Scholar
  32. 32.
    H. Ludewig, “Polyester Fibres — Chemistry & Technology” (Interscience, New York, 1971).Google Scholar
  33. 33.
    D. C. Hookway, J. Text. Inst. 49 (1958) 292.CrossRefGoogle Scholar
  34. 34.
    D. B. Fischbach and W. V. Kotlensky, Electrochem. Tech. 5 (1967) 207.Google Scholar
  35. 35.
    E. G. Zukas and W. V. Green, Carbon 10 (1972) 519.CrossRefGoogle Scholar
  36. 36.
    H. N. Murty, D. L. Biederman and E. A. Heintz, ibid 7 (1969) 667.CrossRefGoogle Scholar
  37. 37.
    B. Granoff, ibid 12 (1974) 405.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1976

Authors and Affiliations

  • H. M. Hawthorne
    • 1
  1. 1.Centre for Materials ResearchThe University of British ColumbiaVancouver, B.C.Canada

Personalised recommendations