Skip to main content
Log in

Effect of molecular weight on the fracture surface energy of poly(methyl methacrylate) in cleavage

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

By the radiolysis of poly(methylmethacrylate) (PMMA), the fracture surface energy (γ) was determined at room temperature as a function of viscosity average molecular weight (¯M v). Using a modified parallel cleavage technique, results showed that γ decreased more than two orders of magnitude with decreasing molecular weight. In the high molecular weight region (¯M v≳105), γ (∼1×105 erg cm−2) was relatively insensitive to polymer chain length; whereas for 2.5×104¯M v≲ 1×105, γ was strongly dependent on molecular weight. A linear regression analysis in the range ¯M v=2 to 2.25×103 indicated that a truly glassy “Griffith” material was approached for which γ ≃ 750 erg cm−2. The results confirm the sigmoidal dependence of γ on molecular weight tested in notched tension. The apparent independence which variations in crack velocity have on γ with decreasing ¯M v is shown and explained in terms of the increasingly brittle character of PMMA. Problems associated with the measurement and interpretation of experimental data are considered, particularly with respect to the lower ¯M v regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Berry, Nature 185 (1960) 91.

    Google Scholar 

  2. J. P. Berry, J. Polymer Sci. 50 (1961) 107.

    Google Scholar 

  3. Idem, ibid 50 (1961) 313.

    Google Scholar 

  4. Idem, ibid, J. Polymer Sci. A 1 (1963) 993.

    Google Scholar 

  5. L. H. Broutman and F. J. McGarry, J. Appl. Polymer Sci. 9 (1964) 589.

    Google Scholar 

  6. D. K. Felbeck and E. Orowan, Welding J. Res. Suppl. 34 (1955) 570-S.

    Google Scholar 

  7. G. R. Irwin, “Fracturing of Metals” (Am. Soc. Metals, Cleveland, 1948) p. 147.

    Google Scholar 

  8. G. R. Irwin and J. A. Kies, Welding J. Res. Suppl. 31 (1952) 95-S; ibid 33 (1954) 193-S.

    Google Scholar 

  9. G. R. Irwin, J. A. Kies and H. L. Smith, ASTM Proc. 58 (1958) 640.

    Google Scholar 

  10. E. Orowan, Welding J. Res. Suppl. 34 (1955) 157-S.

    Google Scholar 

  11. N. L. Svensson, Proc. Phys. Soc. 77 (1961) 876.

    Google Scholar 

  12. J. P. Berry, J. Appl. Phys. 33 (1962) 1741.

    Google Scholar 

  13. M. Higuchi, Repts. Res. Inst. Appl. Mech., Kyrushu Univ. 6 (1958) 173.

    Google Scholar 

  14. S. B. Newman and I. Wolock, “Adhesion and Cohesion” (Elsevier, Amsterdam, 1962). p. 218.

    Google Scholar 

  15. R. P. Kambour and R. E. Robertson, “The Mechanical Properties of Plastics”, General Electric Technical Report No. 70-C-104 (1970) pp. 65–75.

  16. A. A. Griffith, Phil. Trans. Roy. Soc. A221 (1921) 163.

    Google Scholar 

  17. R. P. Kusy and D. T. Turner, Polymer 17 (1975) 161.

    Google Scholar 

  18. G. C. Sih, Eng. Fract. Mech. 5 (1973) 365.

    Google Scholar 

  19. F. A. Bovey, “The Effects of Ionizing Radiation on Natural and Synthetic High Polymers” (Interscience, New York, 1958).

    Google Scholar 

  20. A. R. Shultz, P. I. Roth and G. B. Rathmann, J. Polymer Sci. 22 (1956) 495.

    Google Scholar 

  21. C. D. Bopp and O. Sisman, Nucleonics 13 (1955) 28.

    Google Scholar 

  22. J. P. Berry, J. Appl. Phys. 34 (1963) 62.

    Google Scholar 

  23. L. J. Broutman and F.J. McGarry, J. Appl. Polymer Sci. 9 (1965) 609.

    Google Scholar 

  24. A. K. Green and P. L. Pratt, Eng. Fract. Mech. 6 (1974) 71.

    Google Scholar 

  25. G. P. Marshall, L. E. Culver and J. G. Williams, Plastics & Polymers 37 (1969) 75.

    Google Scholar 

  26. P. I. Vincent and K. V. Gotham, Nature 210 (1966) 1254.

    Google Scholar 

  27. J. P. Berry, J. Polymer Sci. (A) 2 (1964) 4069.

    Google Scholar 

  28. R. P. Kusy and D. T. Turner, Polymer 15 (1974) 394.

    Google Scholar 

  29. R. E. Robertson, ACS Polymer Symposium — Toughness and Brittleness of Plastics, “The Fracture Energy of Low Molecular Weight Fractions of Polystyrene”, J. Polymer Sci., Part C, in press.

  30. J. J. Benbow, Proc. Phys. Soc. 78 (1961) 970.

    Google Scholar 

  31. J. J. Benbow and F. C. Roesler, ibid 70B (1957) 201.

    Google Scholar 

  32. A. Van Den Boogaart and C. E. Turner, Trans. J. Plastics Inst. 31 (1963) 109.

    Google Scholar 

  33. R. P. Kusy and D. T. Turner, J. Polymer Sci. 12 (1974) 2137.

    Google Scholar 

  34. M. Dole, “The Radiation Chemistry of Macromolecules”, Vol. II (Academic Press, New York, 1973) Ch. 6.

    Google Scholar 

  35. A. Charlesby, “Atomic Radiation and Polymers” (Pergamon Press, London 1960) Ch. 18; Nucleonics 12 (1954) 18.

    Google Scholar 

  36. H. J. Cantow and G. V. Shulz, Z. Phys. Chem. (N.F.) 2 (1954) 117.

    Google Scholar 

  37. E. V. Thompson, J. Polymer Sci. 4 (1966) 199.

    Google Scholar 

  38. J. W. Obreimoff, Proc. Roy. Soc. (London) A127 (1930) 290.

    Google Scholar 

  39. N. W. Chilton, “Design and Analysis in Dental and Oral Research” (Lippincott, Philadelphia, 1967) Ch. 8.

    Google Scholar 

  40. P. J. Flory, J. Amer Chem. Soc. 67 (1945) 2048.

    Google Scholar 

  41. A. M. Sookne and M. Harris, Ind. Eng. Chem. 37 (1945) 478.

    Google Scholar 

  42. P. I. Vincent, Polymer 1 (1960) 425.

    Google Scholar 

  43. R. P. Kusy and D. T. Turner, unpublished work.

  44. R. B. Beevers and E. F. T. White, Trans. Faraday Soc. 56 (1960) 744.

    Google Scholar 

  45. R. F. Boyer, Macromol. 1 (1974) 142.

    Google Scholar 

  46. T. G. Fox, Jun. and P. J. Flory, J. Appl. Phys. 21 (1950) 581.

    Google Scholar 

  47. T. G. Fox, Jun. and S. Loshaek, J. Polymer Sci. 15 (1955) 371.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusy, R.P., Katz, M.J. Effect of molecular weight on the fracture surface energy of poly(methyl methacrylate) in cleavage. J Mater Sci 11, 1475–1486 (1976). https://doi.org/10.1007/BF00540881

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540881

Keywords

Navigation