Journal of Materials Science

, Volume 12, Issue 7, pp 1285–1306 | Cite as

The fundamentals of chemical vapour deposition

  • W. A. Bryant


Fundamentals of the chemical vapour deposition process are described and examples given of its application. The most important aspects of the process are reviewed; these include deposit structure (with its relation to process parameters), process control through application of the principles of thermodynamics and reaction kinetics (with emphasis on deposit thickness uniformity, deposit composition control and deposit-substrate adherence) and basic design features of the equipment used.


Polymer Chemical Vapour Deposition Process Control Vapour Deposition Chemical Vapour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. E. Van Arkel and J. H. De Boer, Z Anorg, Allg. Chem. 148 (1925) 345.Google Scholar
  2. 2.
    J. S. De Lodyguine, U. S. Patent 575, 002 (1893).Google Scholar
  3. 3.
    H. Schäfer, “Chemical Transport Reactions” translated by J. Frankfort (Academic Press, New York, 1964).Google Scholar
  4. 4.
    G. De Jachy, J. Gillardeau, P. Rigny, and J. Ondar, “Chemical Vapour Deposition — Fifth International Conference” Edited by J. M. Blocher Jun., H. E. Hintermann and L. H. Hall (The Electrochemical Soc., New York, 1975) CVD V, p. 178.Google Scholar
  5. 5.
    G. F. Wakefield, report AFML-TR-66-397, U. S. Air Force Materials Laboratory, Wright-Patterson AFB, Ohio (1966).Google Scholar
  6. 6.
    R. H. Buck, Microelectronics and Reliability 6 (1967) 231.Google Scholar
  7. 7.
    P. Lilley, P. M. R. Kay and C. N. W. Litting, J. Mater. Sci. 10 (1975) 1317.Google Scholar
  8. 8.
    A. Reisman, M. Berkenblit, S. A. Chan, and J. Angilello, J. Electronic Materials 2 (1973) 177.Google Scholar
  9. 9.
    C. Crowell, J. C. Serace and S. M. Sze, Tr. AIME 233 (1965) 478.Google Scholar
  10. 10.
    J. M. Shaw and J. A. Amick, RCA Review 31 (1970) 306.Google Scholar
  11. 10.a
    Idem, J. Electrochem. Soc. 116 (1969) 376.Google Scholar
  12. 11.
    J. N. Lindstrom and S. Amberg, “Chemical Vapour Deposition — Fourth International Conference” Edited by G. F. Wakefield and J. M. Blocher Jun. (The Electrochemical Soc., New York, 1973) CVD IV, p. 115.Google Scholar
  13. 12.
    J. M. Blocher Jun., “Vapour Deposition” Edited by C. F. Powell, J. H. Oxley and J. M. Blocher Jun. (Wiley, New York, 1966) Chapter 1.Google Scholar
  14. 13.
    B. E. Watts, Thin Solid Films 18 (1973) 1.Google Scholar
  15. 14.
    T. L. Chu and R. K. Smeltzer, J. Vac. Sci. Technol. 10 (1973) 1.Google Scholar
  16. 15.
    J. P. Hirth and G. M. Pound, “Condensation and Evaporation” (Pergammon Press, Oxford, 1963).Google Scholar
  17. 16.
    J. P. Hirth, “Vapour Deposition” Edited by C. F. Powell, J. H. Oxley and J. M. Blocher Jun. (Wiley, New York, 1966) p. 126.Google Scholar
  18. 17.
    R. D. Gretz and C. M. Jackson, Surface Science 6 (1967) 171.Google Scholar
  19. 18.
    B. A. Joyce, J. H. Neave and B. E. Watts, ibid. 15 (1969) 1.Google Scholar
  20. 19.
    Yn. G. Sidorov, V. M. Zaletin, E. A. Krivorotov, L. N. Aleksandrov, S. A. Dvoretskii and V. L. Maksimov, CVD V, 311.Google Scholar
  21. 20.
    G. A. Stevenson, B. Tuck and S. J. T. Owen, J. Mater. Sci. 6 (1971) 413.Google Scholar
  22. 21.
    L. N. Aleksandrov, E. A. Krivorotov, and Yu. G. Sidorov, “Third International Conference on Chemical Vapour Deposition” Edited by F. A. Glaski (The Amer. Nuclear Soc., Hinsdale, III., 1972) CVD III, p. 453.Google Scholar
  23. 22.
    J. M. Blank and V. A. Russell, Tr. AIME 236 (1966) 291.Google Scholar
  24. 23.
    R. W. Haskell and J. G. Byrne, “Treatise on Materials Science and Technology, Vol. 1“ Edited by H. Herman (Academic Press, New York, 1972) p. 293.Google Scholar
  25. 24.
    D. Richman and R. H. Arlett, “Semiconductor Silicon” Edited by R. R. Haberecht and E. L. Kern (The Electrochem. Soc., New York, 1969) p. 200.Google Scholar
  26. 25.
    P. Rai-Choudbury and D. K. Schroer, J. Electrochem. Soc. 118 (1971) 107.Google Scholar
  27. 26.
    A. Vanderdrift, Phillips Research Reports 22 (1967) 267.Google Scholar
  28. 27.
    D. R. Messier and P. Wong, J. Electrochem. Soc. 118 (1971) 772.Google Scholar
  29. 28.
    W. R. Holman and F. J. Huegel, J. Vac. Sci. Technol. 11 (1974) 701.Google Scholar
  30. 29.
    G. Wahl and P. Batzies, CVD IV, 363.Google Scholar
  31. 30.
    R. K. Chuzhko, I. V. Kirillov, Yu. N. Golovanov, and A. P. Zakharov, J. Crystal Growth 3 (1968) 219.Google Scholar
  32. 31.
    N. D. McMurray, R. H. Singleton, K. E. Muzzar, Jun. and D. R. Zimmerman, J. Metals (1965) 600.Google Scholar
  33. 32.
    J. R. Thompson, J. C. Danko, T. L. Gregory and H. F. Webster, IEEE Tr. on Electron Devices ED-16 (1969) 707.Google Scholar
  34. 33.
    L. Yong and R. G. Hudson, “Proceedings of the Conference on Chemical Vapour Deposition of Refractory Metals, Alloys and Compounds” Edited by A. C. Shaffhauser, (The Amer. Nuclear Soc., Hinsdale, III., 1967) CVD I, p. 329.Google Scholar
  35. 34.
    A. M. Shroff, High Temp. — High Press. 6 (1974) 415. A. M. Shroff, F. Delval and J. Lebreton, CVD V, 351.Google Scholar
  36. 35.
    R. Faron, M. Barqu'es, J. P. Durand and J. Gillardeau, CVD IV, 375.Google Scholar
  37. 36.
    P. Rai-Chondbury and P. L. Hower, J. Electro-chem. Soc. 120 (1973) 1761.Google Scholar
  38. 37.
    H. C. Theurer, ibid. 108 (1961) 649.Google Scholar
  39. 38.
    A. E. Campbell, Report NASA-CR-97810, (Electro-Optical Systems Inc., Boston, 1968).Google Scholar
  40. 39.
    R.Wichner, Ph.D. Dissertation, Univ. of California (1966).Google Scholar
  41. 40.
    J. S. Chun, H. S. Shim and J. G. Byrne, Met. Trans. 3 (1972) 3093.Google Scholar
  42. 41.
    J. L. Taylor and D. H. Boone, J. Less-Common Metals 6 (1964) 157.Google Scholar
  43. 42.
    W. A. Bryant, J. Vac. Sci. Techno. 11 (1974) 695.Google Scholar
  44. 43.
    W. R. Holman and F. J. Huegel, CVD I, 127.Google Scholar
  45. 44.
    Y. T. Auck and J. G. Byrne, J. Mater. Sci. 8 (1973) 559.Google Scholar
  46. 45.
    A. F. Weinberg, J. R. Lindgren, N. B. Elsner and R. G. Mills, Nuclear Applications 1 (1965) 581.Google Scholar
  47. 46.
    J. V. Festa and J. C. Danko, CVD I, 349.Google Scholar
  48. 47.
    K. Farrel, J. I. Federer, A. C. Schaffhauser and W. C. Robinson Jun., “Second International Conference on Chemical Vapour Deposition” Edited by J. M. Blocher Jun. and J. C. Withers, (The Electrochemical Soc., New York, 1970) CVD II, p. 263.Google Scholar
  49. 48.
    H. W. McCoy and J. O. Stiegler, CVD I, 391.Google Scholar
  50. 49.
    K. Farrell, CVD IV, 439.Google Scholar
  51. 50.
    J. O. Stiegler, K. Farrell, B. T. M. Loh and H. E. McCoy, Trans. ASM 60 (1967) 494.Google Scholar
  52. 51.
    J. O. Stiegler, K. Farrell and H. E. McCoy, J. Nucl. Mater. 25 (1968) 340.Google Scholar
  53. 52.
    W. C. Yang, L. E. Brecher, and J. G. Cleary, CVD IV, 382.Google Scholar
  54. 53.
    R. A. Holzl, U. S. Patent 3, 565, 676 (1971).Google Scholar
  55. 54.
    R. L. Landingham and J. H. Austin, J. Less-Common Metals 18 (1969) 229.Google Scholar
  56. 55.
    J. S. Lo, R. W. Haskell, J. G. Byrne and A. Sosin, CVD IV, 74.Google Scholar
  57. 56.
    F. W. Hoertel, U. S. Dept. of the Interior, Bureau of Mines report 6731 (1966).Google Scholar
  58. 57.
    W. A. Bryant, J. Less-Common Metals 45 (1976) 37.Google Scholar
  59. 58.
    R. L. Landingham and A. W. Casey, ibid. 26 (1972) 173.Google Scholar
  60. 59.
    J. J. Nickl and C. Vonbraunmühl, ibid. 37 (1974) 317.Google Scholar
  61. 60.
    L. W. Owen, Metallurgica (April 1959) 165.Google Scholar
  62. 61.
    J. W. Matthews, Phil. Mag. 13 (1966) 1207.Google Scholar
  63. 62.
    R. Kuntze, A. Chambers and M. Prutton, Thin Solid Films 4 (1969) 47.Google Scholar
  64. 63.
    J. W. Matthews, D. C. Jackson and A. Chambers, ibid. 26 (1975) 129.Google Scholar
  65. 64.
    S. Mendelson, Surface Science 6 (1967) 233.Google Scholar
  66. 65.
    G. H. Plantinga, IEEE Trans. Electron. Devices ED-16 (1969) 394.Google Scholar
  67. 66.
    G. W. Cullen and C. C. Wang, J. Electrochem. Soc. 118 (1971) 640.Google Scholar
  68. 67.
    T. L. Chu and J. R. Gavaler, ibid. 110 (1963) 388.Google Scholar
  69. 68.
    J. M. Charig, B. A. Joyce, D. J. Stirland and R. W. Bicknell, Phil. Mag. 7 (1962) 1847.Google Scholar
  70. 69.
    J. H. Vandermerwe and F. C. Frank, Proc. Royal Soc. (London) A 198 (1949) 205.Google Scholar
  71. 70.
    P. H. Robinson and N. Goldsmith, J. Electronic Materials 4 (1975) 313.Google Scholar
  72. 71.
    D. W. Shaw, J. Electrochem. Soc. 115 (1968) 405.Google Scholar
  73. 72.
    B. Tuck and R. Hearing, J. Mater. Sci. 10 (1975) 2006.Google Scholar
  74. 73.
    E. T. Peters and W. D. Potter, Tr. AIME 233 (1965) 473.Google Scholar
  75. 74.
    M. L. Hammond and G. M. Bowers, ibid. 242 (1968) 546.Google Scholar
  76. 75.
    J. A. Aboaf, J. Electrochem. Soc. 114 (1967) 948.Google Scholar
  77. 76.
    F. Eversteyn, P. J. W. Severin, C. H. J. Vanderbrekel and H. L. Peek, ibid Soc. 117 (1970) 925.Google Scholar
  78. 77.
    E. J. Mezey, “Vapour Deposition” Edited by C. F. Powell, J. H. Oxley and J. M. Blocher Jun., (Wiley, New York, 1966) p. 423.Google Scholar
  79. 78.
    W. W. Kuhn, CVD II, 329.Google Scholar
  80. 79.
    V. A. Tracey, Powder Met. 9 (1966) 54.Google Scholar
  81. 80.
    R. L. Heestand and C. F. Leitten Jun., Nuclear Applications 1 (1965) 584.Google Scholar
  82. 81.
    P. H. Crayton and M. C. Gridly, Powder Met. 14 (1971) 78.Google Scholar
  83. 82.
    T. U. M. S. Murthy, N. Miyamoto, M. Shimbo and J. Nishizawa, J. Crystal Growth 33 (1976) 1.Google Scholar
  84. 83.
    H. Lamprey, U. S. Patent 3, 253, 886 (1966).Google Scholar
  85. 84.
    F. C. Frank, Disc. Faraday Soc. 5 (1949) 48.Google Scholar
  86. 85.
    J. A. Simmons, R. L. Parker and R. E. Howard, J. Appl. Phys. 35 (1964) 2271.Google Scholar
  87. 86.
    S. Motojima, K. Baba, K. Kitatani, Y. Takahashi and K. Sugiyama, J. Crystal Growth 32 (1976) 141.Google Scholar
  88. 87.
    T. Takahashi, K. Sugiyama and H. Itoh, J. Electrochem. Soc. 117 (1970) 541.Google Scholar
  89. 88.
    J. I. Cuomo, J. F. Ziegler and J. M. Woodall, Appl. Phys. Letten 26 (1975) 557.Google Scholar
  90. 89.
    C. C. Wang, K. H. Zaininger and M. T. Duffy, RCA Review 31 (1970) 728.Google Scholar
  91. 90.
    N. Goldsmith and W. Kern, ibid. 27 (1967) 153.Google Scholar
  92. 91.
    J. Middelhoek and A. J. Klinkhamer, CVD V, 19.Google Scholar
  93. 92.
    T. L. Chu, J. R. Szedon and G. A. Gruber, Tr. AIME 242 (1968) 532.Google Scholar
  94. 93.
    C. R. Barnes and C. R. Geesner, J. Electrochem. Soc. 110 (1963) 361.Google Scholar
  95. 94.
    N. Nagasima and N. Kubota, Japan J. Applied Physics 14 (1975) 1105.Google Scholar
  96. 95.
    V. Y. Doo, D. R. Nicholas and G. A. Silvey, J. Electrochem. Soc. 113 (1966) 1279.Google Scholar
  97. 96.
    M. T. Duffy, J. E. Carnes and D. Richman, Met. Trans. 2 (1971) 667.Google Scholar
  98. 97.
    V. J. Silvestri, E. A. Irene, S. Zirinsky and J. D. Kuptsis, J. Electronic Materials 4 (1975) 429.Google Scholar
  99. 98.
    R. W. Andrews, D. M. Rynne and E. G. Wright, Solid State Technol. 12 (1969) 61.Google Scholar
  100. 99.
    K. Sugawara, T. Yoshimi and H. Sakai, CVD V, 407.Google Scholar
  101. 100.
    G. Wahl, CVD V, 391.Google Scholar
  102. 101.
    W. Kern and R. C. Heim, J. Electrochem. Soc. 117 (1970) 562.Google Scholar
  103. 102.
    W. Kern, G. L. Schnable and A. W. Fisher, RCA Review 37 (1976) 3.Google Scholar
  104. 103.
    C. F. Powell, I. E. Campbell and B. W. Gonser, Tr. Electrochem. Soc. 93 (1948) 258.Google Scholar
  105. 104.
    J. M. Blocher Jun., J. Vac. Sci. Technol. 11 (1974) 680.Google Scholar
  106. 105.
    P. S. Schaffer, J. Amer. Ceram. Soc. 48 (1965) 508.Google Scholar
  107. 106.
    J. F. Berkeley, A. Brenner and W. E. Reid Jun., J. Electrochem. Soc. 114 (1967) 561.Google Scholar
  108. 107.
    Yu. N. Golovanov, A. I. Krasovskii, V. L. Zotov and V. P. Kuzmin, Zh. Neorgan. Khim. 10 (1965) 1948.Google Scholar
  109. 108.
    A. Miller and G. D. Barrett, J. Electrochem. Soc. 109 (1962) 973.Google Scholar
  110. 109.
    A. M. Shroff and M. C. Borromée, Prace Przemyslowego Inst. Elktroniki 8 (1967) 447. A. M. Shroff and M. C. Borromée, Memoires Scientifiques. Rev. Metallurg 63 (1966) 863.Google Scholar
  111. 110.
    A. M. Shroff, “High Temperature Materials, Sixth Plansee Seminar”, Edited by F. Benesovsky, (Metalwerk Plansee AG, Reutte, 1969) p. 854.Google Scholar
  112. 111.
    R. Faron and M. Barques, Third International Conference on Thermionic Electrical Power Generation, Jülich, Federal Republic of Germany (1972). R. Faron, M. Barques, J. Gillardeau, R. Hasson, G. Dejachy and J. P. Durand, CVD III, 439.Google Scholar
  113. 112.
    A. C. Loonam, J. Electrochem. Soc. 106 (1959) 238.Google Scholar
  114. 113.
    W. H. Shepherd, ibid. 112 (1965) 988.Google Scholar
  115. 114.
    E. G. Bylander, ibid. 109 (1962) 1171.Google Scholar
  116. 115.
    W. Steinmeier, Phillips Research Reports 18 (1963) 75.Google Scholar
  117. 116.
    J. J. Grossman, J. Electrochem. Soc. 110 (1963) 1065.Google Scholar
  118. 117.
    T. Takashi and H. Itoh, J. Less-Common Metals 38 (1972) 211.Google Scholar
  119. 118.
    R. W. Bicknell, Phil. Mag. 14 (1966) 31.Google Scholar
  120. 119.
    R. A. Burmeister Jun., and R. W. Regehr, Tr. AIME 245 (1969) 565.Google Scholar
  121. 120.
    H. B. Pogge, D. W. Boss and E. Ebert, CVD II, 768.Google Scholar
  122. 121.
    B. A. Joyce, J. C. Weaver and D. J. Maule, J. Electrochem. Soc. 112 (1965) 1100.Google Scholar
  123. 122.
    A. S. Grove, A. Roder and C. T. Sah, J. Appl. Phys. 36 (1965) 802.Google Scholar
  124. 123.
    J. J. Lander and L. H. Germer, AIME Metals Technology 14 (1947) Tech. Publ. 2259.Google Scholar
  125. 124.
    J. J. Nickl and K. K. Scheitzer, J. Less-Common Metals 26 (1972) 335. J. J. Nickl, M. Reichle and R. Vesper, CVD III, 369.Google Scholar
  126. 125.
    J. J. Nickl, K. K. Schweitzer and P. Luxenberg, CVD III, 4.Google Scholar
  127. 126.
    T. Manabe, T. Gejyo, H. Seki and H. Eguchi, CVD III, 25.Google Scholar
  128. 127.
    S. Minagawa and H. Seki, CVD IV, 50.Google Scholar
  129. 128.
    V. S. Ban, J. Electrochem. Soc. 118 (1971) 1473.Google Scholar
  130. 129.
    C. Bernard, Y. Deniel, A. Jacquot, P. Vay and M. Ducarrior, J. Less-Common Metals 40 (1975) 165.Google Scholar
  131. 130.
    P. Klima, J. Silhavy, V. Rerabek, I. Braun, C. Cerny, P. Vonka and R. Holub, J. Crystal Growth 32 (1976) 279.Google Scholar
  132. 131.
    A. Boucher and L. Hollan, J. Electrochem. Soc. 118 (1970) 932.Google Scholar
  133. 132.
    L. P. Hunt and E. Sirtl, ibid. 119 (1972) 1741.Google Scholar
  134. 133.
    Idem, ibid. 120 (1973) 806.Google Scholar
  135. 134.
    M. Ducarrior and C. Bernard, CVD V, 72.Google Scholar
  136. 135.
    M. Ducarrior, M. Jaymes, C. Bernard and Y. Deniel, J. Less-Common Metals 40 (1975) 173.Google Scholar
  137. 136.
    R. Kieffer, D. Fister, H. School and K. Mauer, Powder Met. Int. 5 (1973) 188.Google Scholar
  138. 137.
    J. J. Gebhart and R. F. Cree, J. Amer. Ceram. Soc. 48 (1965) 262.Google Scholar
  139. 138.
    M. J. Hakim, CVD V, 634.Google Scholar
  140. 139.
    P. Wong and McD. Robinson, J. Amer. Ceram. Sco. 53 (1970) 617.Google Scholar
  141. 140.
    H. Schlichting, “Boundary Layer Theory” (McGraw-Hill, New York, 1960) Chapter 7.Google Scholar
  142. 141.
    T. H. Chilton and A. P. Colburn, Ind. Eng. Chem. 26 (1934) 1183.Google Scholar
  143. 142.
    H. E. Carlton and J. H. Oxley, A.I.Ch.E. J. 13 (1967) 571.Google Scholar
  144. 143.
    H. E. Carlton and J. H. Oxley, CVD I, 19.Google Scholar
  145. 144.
    W. H. McAdams, “Heat Transmission” (McGraw-Hill, New York, 1954).Google Scholar
  146. 145.
    H. W. Hsu and R. B. Bird, A.I.Ch.E. J. 6 (1960) 516.Google Scholar
  147. 146.
    C. J. Geankoplis, “Mass Transport Phenomena” (Hold, Reinhart and Winston, New York, 1972) Chapter 6.Google Scholar
  148. 147.
    G. Wahl and P. Batzies, CVD IV, 425.Google Scholar
  149. 148.
    W. A. Bryant and G. H. Meier, J. Electrochem. Soc. 120 (1973) 559.Google Scholar
  150. 149.
    O. A. Hougen and K. M. Watson, “Chemical Process Principles” (Wiley New York, 1947) Chapter 20.Google Scholar
  151. 150.
    R. B. Bird, W. E. Stewart and E. N. Lightfoot, “Transport Phenomena” (Wiley, New York, 1960) Chapter 17.Google Scholar
  152. 151.
    F. A. Kuznetsov and V. I. Belyi, J. Electrochem. Soc. 117 (1970) 785.Google Scholar
  153. 152.
    R. F. Lever, J. Chem. Phys. 37 (1962) 1174.Google Scholar
  154. 153.
    J. H. Oxley, E. A. Beidler, J. M. Blocher Jun., C. J. Lyons, R. S. Park and J. H. Pearson, “Metals for the Space Age, Fifth Plansee Seminar” Edited by F. Benesovsky (Metalwork Plansee AG, Reutte/Tyrol, 1965) p. 278.Google Scholar
  155. 153.a
    Idem., Nuclear Applications 1 (1965) 567.Google Scholar
  156. 154.
    H. S. Spacil and J. Wulff, report AD-156957 U. S. National Tech. Infor. Serv., (1958).Google Scholar
  157. 155.
    K. J. Sladek and W. W. Gibert, CVD III, 215.Google Scholar
  158. 156.
    P. Vanderputte, L. J. Giling and J. Bloem, J. Crystal Growth 31 (1975) 299.Google Scholar
  159. 157.
    K. Sugawara, R. Takahashi, H. Tochikubo and Y. Koga, CVD II, 713.Google Scholar
  160. 158.
    R. A. Graff and P. N. Walsh, “Recent Advances in Kinetics — Chemical Engineering Progress Symposium Series”, Vol. 63, No. 72, Edited by T. E. Corrigan, (Amer. Inst, of Chemical Engineers, New York, 1967) p. 70.Google Scholar
  161. 159.
    L. Aggour, E. Fitzer, E. Ignotowitz and M. Sahebkar, Carbon 12 (1974) 358.Google Scholar
  162. 160.
    A. C. Nyce, B. L. Vondra, R. Cline and L. P. Pepkowitz, Tr. Amer. Nuclear Soc. 7 (1964) 427.Google Scholar
  163. 161.
    J. J. Gebhardt, CVD IV, 460.Google Scholar
  164. 162.
    M. Berkenblit and R. Reisman, Met. Trans. 2 (1971) 803.Google Scholar
  165. 163.
    K. H. Yang and O. A. Hougen, Chem. Engineering Prog. 46 (1950) 146.Google Scholar
  166. 164.
    O. A. Hougen and K. M. Watson, Ind. Eng. Chem. 35 (1943) 529.Google Scholar
  167. 165.
    H. E. Carlton and J. H. Oxley, A.I.Ch.E. J. 13 (1967) 86.Google Scholar
  168. 166.
    Idem. Ibid. 11 (1965) 79.Google Scholar
  169. 167.
    H. E. Carlton, J. H. Oxley, E. H. Hall and J. M. Blocher Jun., CVD II, 209.Google Scholar
  170. 168.
    P. E. Gruber, CVD II, 25.Google Scholar
  171. 169.
    H. Cheung, CVD III, 136.Google Scholar
  172. 170.
    S. Glasstone, K. J. Laidler and H. Eyring, “Theory of Rate Process” (McGraw-Hill, New York, 1941).Google Scholar
  173. 171.
    R.W. Haskell, CVD II, 63.Google Scholar
  174. 172.
    R. Cadoret and M. Cadoret, J. Crystal Growth 31 (1975) 142.Google Scholar
  175. 173.
    G. Mandel, J. Chem. Phys. 37 (1962) 1177.Google Scholar
  176. 174.
    F. J. Heugel, E. Fung, H. Cheung and W. R. Holman, CVD III, 145.Google Scholar
  177. 175.
    W. C. Seymour and J. G. Byrne, CVD V, 815.Google Scholar
  178. 176.
    P. Lilley, P. L. Jones and C. N. W. Litting, J. Mater. Sci. 5 (1970) 891.Google Scholar
  179. 177.
    K. J. Sladek, J. Electrochem. Soc. 118 (1971) 654.Google Scholar
  180. 178.
    G. Cochet, H. Mellottee and R. Delbougo, CVD V, 43.Google Scholar
  181. 179.
    R. V. Mrazek, S. B. Knapp and F. E. Block, Tr. AIME 242 (1968) 995.Google Scholar
  182. 180.
    R. N. Ghoshtagore, J. Electrochem. Soc. 117 (1970) 529.Google Scholar
  183. 181.
    Y. S. Chiang and D. Richman, Met. Trans. 2 (1971) 743.Google Scholar
  184. 182.
    O. Tabata, CVD V, 681.Google Scholar
  185. 183.
    M. L. Pearce and R. W. Marek, J. Amer. Ceram. Soc. 51 (1968) 84.Google Scholar
  186. 184.
    V. P. Yelyutin, G. I. Pepekin and B. S. Lysov, U. S. Air Force Systems Command, Wright-Patterson AFB, Ohio, Foreign Technology Div. Translation FTD-TT-64-933/1 (1965).Google Scholar
  187. 185.
    Staff, DMIC report 170, Defense Metals Information Center, Battelle Memorial Insitute, Columbus, Ohio (1962).Google Scholar
  188. 186.
    M. G. Bowman, USAEC Research and Development Report TID-7653 (Part II), Washington DC (1962).Google Scholar
  189. 187.
    A. G. Preban and H. P. Leckie, CVD II, 367.Google Scholar
  190. 188.
    P. N. Wlash, CVD IV, 147.Google Scholar
  191. 189.
    C. F. Powell, “Vapour Deposition” Edited by C. F. Powell, J. H. Oxley and J. M. Blocher Jun., (Wiley, New York, 1966) p. 191.Google Scholar
  192. 190.
    W. J. Childs, J. E. Cline, W. M. Kisner and J. Wulff, Trans. ASM 43 (1950) 105.Google Scholar
  193. 191.
    J. P. Redmond and D. F. Bazzarre, Electrochemical Technology 6 (1968) 336.Google Scholar
  194. 192.
    Ya.M. Polyakov and G. Z. Zamesova, Tsvetn Met. 7 (1964) 130.Google Scholar
  195. 193.
    F. A. Glaski, CVD IV, 521.Google Scholar
  196. 194.
    W. R. Martin, R. L. Heestand, R. W. McDonald and G. A. Reimann, CVD I, 303.Google Scholar
  197. 195.
    J. I. Federer and L. E. Poteat, CVD III, 591.Google Scholar
  198. 196.
    R. Funk, H. Schachner, C. Triquet, M. Kornmann and B. Lux, J. Electrochem. Soc. 123 (1976) 285.Google Scholar
  199. 197.
    N. J. Archer, CVD V, 556.Google Scholar
  200. 198.
    J. Spitz and J. Chevallier, CVD V, 204.Google Scholar
  201. 199.
    R. W. Haskell and A. R. Imam, CVD V, 829.Google Scholar
  202. 200.
    W. A. Bryant, CVD II, 409.Google Scholar
  203. 201.
    W. A. Bryant and G. H. Meier, J. Vac. Sci Technol. 11 (1974) 719.Google Scholar
  204. 202.
    T. Takahashi, K. Sugiyama and K. Tomita, J. Electrochem. Soc. 114 (1967) 1230.Google Scholar
  205. 203.
    H. Gass, H. Mantle and H. E. Hintermann, CVD V, 99.Google Scholar
  206. 204.
    D. Richman and J. J. Tietjen, Tr. AIME 239 (1967) 419.Google Scholar
  207. 205.
    T. Takahashi and H. Kamiya, J. Crystal Growth 26 (1974) 203.Google Scholar
  208. 206.
    W. A. Bryant, MS Thesis, Univ. of Pittsburgh (1971).Google Scholar
  209. 207.
    A. C. Schaffhauser, Report ORNL-4390, Oak Ridge National Laboratory, Oak Ridge, Tenn. (1969).Google Scholar
  210. 208.
    C. I. Fairchild, CVD I, 149.Google Scholar
  211. 209.
    J. G. Bonaldson, F. W. Hoertel and A. A. Cochran, J. Less-Common Metals 14 (1968) 93.Google Scholar
  212. 210.
    B. P. Kreyugauz, Ye. I. Pluzhnikova, B. N. Rabinovich and V. N. Makarova, U. S. Fed. Scientific and Tech. Inform. Service Tr. FTD-MT-24-246-68 (1968).Google Scholar
  213. 211.
    L. W. Roberts, “High Temperature Materials, Sixth Plansee Seminar” Edited by F. Benesovsky, (Metallwerk Plansee AG, Reutte, 1969) p. 880.Google Scholar
  214. 212.
    F. J. Huegel and W. R. Holman, CVD II, 171.Google Scholar
  215. 213.
    K. S. G. Pertwee, U. S. Patent 3, 127 641 (1964).Google Scholar
  216. 214.
    J. J. Hanak, “Metallurgy of Advanced Electronic Materials” Edited by G. E. Brock (Interscience, New York, 1963) p. 161.Google Scholar
  217. 215.
    W. A. Bryant, J. Crystal Growth 35 (1976) 257.Google Scholar
  218. 216.
    J. G. Donaldson, U. S. Bureau of Mines Report 6713, Washington, DC (1966).Google Scholar
  219. 217.
    J. I. Federer and A. C. Schaffhauser, CVD III, 242.Google Scholar
  220. 218.
    J. I. Federer and C. F. Leitten Jun., Nuclear Applications 1 (1965) 575.Google Scholar
  221. 219.
    Yu. N. Tokaev, Yu. N. Golovanov and A. I. Krasovskii, Societ J. Non-Ferrous Metals 4 (1969) 63.Google Scholar
  222. 220.
    W. A. Bryant, Ph.D. Dissertation, Univ. of Pittsburgh (1975).Google Scholar
  223. 221.
    W. A. Bryant and G. H. Meier, CVD V, 161.Google Scholar
  224. 222.
    O. Kubaschewski, E. L. Evans and C. B. Alcock, “Metallurgical Thermochemistry” (Pergamon, New York, 1967).Google Scholar
  225. 223.
    L. R. Newkirk, F. A. Valencia and T. C. Wallace, CVD V, 704.Google Scholar
  226. 224.
    F. R. Sale, J. Less-Common Metals 19 (1969) 53.Google Scholar
  227. 225.
    J. Chin, CVD III, 164.Google Scholar
  228. 226.
    E. M. Saprrow, Phys. Fluids 2 (1959) 319.Google Scholar
  229. 227.
    P. Wang and R. C. Bracken, CVD III, 755.Google Scholar
  230. 228.
    S. K. Tung and R. E. Caffrey, Tr. AIME 233 (1965) 572.Google Scholar
  231. 229.
    R. Takahashi, K. Sugawara, Y. Nakazawa and Y. Koga, CVD II, 695.Google Scholar
  232. 230.
    V. S. Ban and S. L. Gilbert, J. Crystal Growth 31 (1975) 284.Google Scholar
  233. 231.
    P. J. Chao, “Metals for the Space Age, Fifth Plansee Seminar” Edited by F. Benesovsky, (Metallwerk Plansee AG, Reutte/Tyrol, 1965) p. 301.Google Scholar
  234. 232.
    J. H. Oxley, C. F. Powell and J. M. Blocher Jun., U. S. Patent 3, 178, 308 (1965).Google Scholar
  235. 233.
    J. Guilleray, R. L. R. Lefevre, M. S. T. Price and J. P. Thomas, CVD V, 727.Google Scholar
  236. 234.
    A. H. Roberson, A. Landsberg and F. E. Block, “Metals for the Space Age, Fifth Plansee Seminar” Edited by F. Benesovsky, (Metallwerk Plansee AG, Reutte/Tyrol, 1965) p. 316.Google Scholar
  237. 235.
    R. L. Beatty, F. A. Carlsen Jun., and J. L. Cook, Nuclear Applications 1 (1965) 560.Google Scholar
  238. 236.
    K. Ikawa and K. Iwamoto, J. Nuc. Mater. 45 (1972) 67.Google Scholar
  239. 237.
    J. C. Bokros, Carbon 4 (1966) 293.Google Scholar
  240. 238.
    A. I. Belyayev, L. A. Nisel'son and I. V. Petrusevich, Russ. Met. (Jan–Feb. 1968) 38.Google Scholar
  241. 239.
    H. G. Sowman, R. L. Surver and J. R. Johnson, Nucl Sci. and Engineering 20 (1964) 227.Google Scholar
  242. 240.
    H. S. Shim, R. W. Haskell and J. G. Byrne, CVD III, 715.Google Scholar
  243. 241.
    T. O. Sedgwick, J. E. Smith Jun., R. Ghez and M. E. Cowher, J. Crystal Growth 31 (1975) 264.Google Scholar
  244. 242.
    M. L. Lieberman and G. T. Noles, CVD IV, 19.Google Scholar
  245. 243.
    G. W. Cullen, J. R. Corboy and R. T. Smith, J. Crystal Growth 31 (1975) 274. G. W. Cullen, J. F. Corboy and R. T. Smith, RCA Review 31 (1970) 355.Google Scholar
  246. 244.
    T. I. Kamius and C. J. Dell'oca, J. Electrochem. Soc. 119 (1972) 112.Google Scholar
  247. 245.
    K. Sugawara, T. Yoshimi, H. Okuyama and T. Shirasu, CVD IV, 205.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1977

Authors and Affiliations

  • W. A. Bryant
    • 1
  1. 1.Westinghouse Research and Development CenterPittsburghUSA

Personalised recommendations