Journal of Materials Science

, Volume 17, Issue 6, pp 1765–1772 | Cite as

Plastic deformation mechanisms in poly(acrylonitrile-butadiene styrene) [ABS]

  • Athene M. Donald
  • Edward J. Kramer


Thin films of two poly (acrylonitrile-butadiene-styrene) [ABS] resins have been strained in tension, and the ensuing deformation has been characterized by transmission electron microscopy. To enhance contrast of the rubber particles, some of the specimens were stained with OsO4. Films containing only solid rubber particles 0.1 μm in diameter show little tendency for crazing. Instead, cavitation of the rubber particles occurs, together with localized shear deformation between the particles along a direction nearly normal to the tensile axis. For specimens containing a mixture of the same small particles plus larger (1.5μm diameter) particles containing glassy occlusions, some crazing does occur. Crazes tend to nucleate at the larger particles only. When crazes encounter the smaller particles these cavitate without appearing to impede or otherwise affect the craze growth. The occluded particles also show significant cavitation, with voids forming at their centres at sufficiently high levels of strain. These voids do not seem to lead to rapid craze break-down and crack propagation. In commercial ABS, which typically has both large and small rubber particles, both crazing, nucleated by the large particles, and shear deformation, encouraged by the cavitation of small rubber particles, can be expected to make important contributions to the toughness of the polymer.


Transmission Electron Microscopy Styrene Cavitation Small Particle Large Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. B. Bucknall, “Toughened Plastics” (Applied Science Publishers, London, 1977) 1.Google Scholar
  2. 2.
    K. Kato, J. Elect. Micros. 14 (1965) 220.Google Scholar
  3. 3.
    Idem, Polymer Lett. 4 (1966) 35.Google Scholar
  4. 4.
    M. Matsuo, C. Nozaki and Y. Jyo, Polymer Eng. Sci. 9 (1969) 197.Google Scholar
  5. 5.
    H. Breuer, F. Haaf and J. Stabenow, J. Macromol. Sci. Phys. B14 (1977) 387.Google Scholar
  6. 6.
    S. L. Aggarwal and R. A. Livigni, Polymer Eng. Sci. 17 (1977) 498.Google Scholar
  7. 7.
    S. L. Rosen, ibid. 7 (1967) 115.Google Scholar
  8. 8.
    M. Matsuo, A. Ueda and Y. Kondo, Polymer Eng. Sci. 10 (1970) 253.Google Scholar
  9. 9.
    C. B. Bucknall and R. R. Smith, Polymer 6 (1965) 471.Google Scholar
  10. 10.
    M. Matsuo, Polymer Eng. Sci. 9 (1970) 206.Google Scholar
  11. 11.
    C. B. Bucknall and D. Clayton, J. Mater. Sci. 7 (1972) 202.Google Scholar
  12. 12.
    C. B. Bucknall, D. Clayton and W. C. Keast, ibid. 7 (1972) 1443.Google Scholar
  13. 13.
    P. Beahan, A. Thomas and M. Bevis, ibid. 11 (1976) 1207.Google Scholar
  14. 14.
    E. J. Kramer, in “Polymer Compatibility and Incompatibility: Principles and Practices” edited by K. Solc, (MMI Press, Midland, MI, USA, 1982).Google Scholar
  15. 15.
    B. D. Lauterwasser and E. J. Kramer, Phil. Mag. 39A (1979) 469.Google Scholar
  16. 16.
    A. M. Donald and E. J. Kramer, J. Appl. Polymer. Sci., to be published.Google Scholar
  17. 17.
    Idem, J. Mater. Sci. 17 (1982) to be published.Google Scholar
  18. 18.
    C. B. Bucknall and I. C. Drinkwater, J. Mater. Sci. 8 (1973) 1800.Google Scholar
  19. 19.
    P. Beahan, A. Thomas and M. Bevis, J. Mater. Sci. 11 (1976) 1207.Google Scholar
  20. 20.
    F. Ramsteiner, Polymer 20 (1979) 839.Google Scholar
  21. 21.
    F. Haaf, H. Brewer and J. Stabenow, Angew Makrolmol. Chem. 58/59 (1977) 95.Google Scholar
  22. 22.
    A. M. Donald and E. J. Kramer, J. Mater. Sci. 16 (1981) 2967.Google Scholar
  23. 23.
    Idem, J. Polymer Sci. Polymer Phys. Ed. to be published.Google Scholar
  24. 24.
    Idem, Polymer, to be published.Google Scholar
  25. 25.
    H. Breuer, J. Stabenow and F. Haaf, Proceedings of the Conference on Toughening of Plastics, London, July 1978, (Plastics and Rubber Institute, London, 1978) Paper 13.Google Scholar
  26. 26.
    A. M. Donald and E. J. Kramer, Phil. Mag. 43A (1981) 857.Google Scholar
  27. 27.
    A. M. Donald, T. Chan and E. J. Kramer, J. Mater. Sci. 16 (1981) 669.Google Scholar

Copyright information

© Chapman and Hall Ltd 1982

Authors and Affiliations

  • Athene M. Donald
    • 1
  • Edward J. Kramer
    • 1
  1. 1.Department of Materials Science and Engineering and the Materials Science CenterCornell UniversityIthacaUSA

Personalised recommendations