Skip to main content
Log in

Analytical technique for the determination of solidification rates during the inward freezing of cylinders

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An analytical/experimental approach which permits the determination of solidification rates during the inward solidification of cylinders is proposed. The technique is based on a previous analytical solution that treats the generalized problem of solidification of slabs. This solution is modified by a geometric correlation to compensate for the cylindrical geometry. A number of experiments have been carried out with a special experimental set-up, designed to simulate the inward solidification of cylinders in a water-cooled mould. A series of comparisons of experimental results, numerical predictions and calculations furnished by the proposed technique were made, showing good agreement for any case examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a s :

Thermal diffusivity of solid metal = k s/c s d s (m2 sec−1)

A i :

Internal surface area of the mould (m2)

b s :

Heat diffusivity of solid metal = (k s c s d s 1/2(J m−2 sec−1/2 K−1)

c s :

Specific heat of solid metal (J kg−1 K−1)

d s :

Density of solid metal (kg m−3)

h :

Newtonian heat transfer coefficien (W m−2 K−1)

H :

Latent heat of fusion (J kg−1)

k s :

Thermal conductivity of solid metal (W m−1 K−1)

q :

Heat flux (W m−2)

r :

Radial position (m)

r o :

Radius of cylinder (m)

r f :

Radius of solid/liquid interface (m)

S :

Thickness of solidified metal (m)

S o :

Thickness of metal side adjunct (m)

t :

Solidification time (sec)

T :

Temperature (K)

T i :

Surface temperature (K)

T f :

Freezing temperature of metal (K)

T o :

Temperature of the coolant (K)

T s :

Temperature at any point in the solidified metal (K)

V 1 :

Volume of remaining liquid metal during the solidification (m3)

V s :

Volume of solidified metal (m3)

V T :

Total volume of metal in the mould (m3)

x :

Distance from metal/mould interface (m)

φ :

Dimensionless solidification constant.

References

  1. M. N. Özisik, “Heat Conduction” (John Wiley and Sons, New York, 1980) pp. 397–438.

    Google Scholar 

  2. A. L. London and R. A. Seban, Trans. ASME 65 (1943) 771.

    Google Scholar 

  3. T. W. Clyne, A. Garcia, P. Ackermann and W. Kurze, J. Met. 34 (1982) 34.

    Google Scholar 

  4. J. K. Brimacombe, Can. Met. Q. 15 (1976) 1.

    Google Scholar 

  5. J. K. Brimacombe, J. E. Lait and F. Weinberg, “Mathematical Process Models” (The Metals Society, London, 1974).

    Google Scholar 

  6. W. F. Savage, C. D. Lundin and A. H. Aronson, Welding J. (Research Suppl.) 44 (1965) 175-s.

  7. T. W. Clyne and A. Garcia, J. Mater. Sci. 16 (1981) 1643.

    Google Scholar 

  8. H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids” (Oxford University Press, London, 1959) pp. 282–296.

    Google Scholar 

  9. R.W. Ruddle, “The Solidification of Castings” (The Institute of Metals, London, 1957) pp. 72–120.

    Google Scholar 

  10. G. H. Geiger and D. R. Poirier, “Transport Phenomena in Metallurgy” (Addison Wesley, Massachussetts, 1973) pp. 329–360.

    Google Scholar 

  11. N. M. H. Lightfoot, Proc. London Math. Soc. 31 (1930) 97.

    Google Scholar 

  12. C. Schwartz, Zeitschrift für Angereandt Mathematik und Mechanik 13 (1933) 202.

    Google Scholar 

  13. Y. Lyubov, Doklay Akad. Nauk SSSR 68 (1949) 847.

    Google Scholar 

  14. J. Stefan, Ann. Phys. u Chem. 42 (1891) 139.

    Google Scholar 

  15. N. Chvorinov, Die Giesserei 27 (1940) 177.

    Google Scholar 

  16. A. Garcia and M. Prates, Met. Trans. B 9 (1978) 449.

    Google Scholar 

  17. A. Garcia, T. W. Clyne and M. Prates, ibid. 10 (1979) 85.

    Google Scholar 

  18. C. M. Adams Jr., “Liquid Metals and Solidification” (American Society for Metals, Cleveland, 1958) pp. 187–217.

    Google Scholar 

  19. A. W. D. Hills, Trans. TMS-AIME 245 (1969) 1471.

    Google Scholar 

  20. P. Hrycak, A.I.Ch.E.J. 9 (1963) 585.

    Google Scholar 

  21. Y. P. Shih and S. Y. Tsay, Chem. Eng. Sci. 26 (1971) 809.

    Google Scholar 

  22. Y. P. Shih and T. C. Shou, ibid. 26 (1971) 1787.

    Google Scholar 

  23. D. S. Riley, F. T. Smith and G. Poots, Int. J. Heat Mass Transfer 17 (1974) 1507.

    Google Scholar 

  24. J. Kern and G. L. Wells, Met. Trans. B 8 (1977) 99.

    Google Scholar 

  25. P. A. Longwell, A.I.Ch.E.J. 4 (1958) 53.

    Google Scholar 

  26. G. M. Dusimberre and V. A. Blacksburg, Trans. ASME 67 (1945) 703.

    Google Scholar 

  27. R. J. Sarjant and M. R. Slack, J. Iron Steel Inst. 177 (1954) 428.

    Google Scholar 

  28. D. C. Baxter, J. Heat Transfer 84 (1962) 317.

    Google Scholar 

  29. J. Schniewind, J. Iron Steel Inst. 201 (1963) 594.

    Google Scholar 

  30. J. G. Henzel Jr. and J. Keverian, Trans. AFS 74 (1965) 661.

    Google Scholar 

  31. L. C. Tao, A.I.Ch.E.J. 13 (1967) 165.

    Google Scholar 

  32. Idem, ibid. 14 (1968) 720.

    Google Scholar 

  33. T. W. Clyne and A. Garcia, Int. J. Heat Mass Transfer 23 (1980) 773.

    Google Scholar 

  34. M. N. Özisik and J. C. Uzzell Jr., J. Heat Transfer 101 (1979) 331.

    Google Scholar 

  35. R. Siegel and J. M. Savino, Proc. 3rd Heat Transfer Conf., Amer. Soc. Mech, Eng. 4 (1966) 141.

    Google Scholar 

  36. Idem, Int. J. Heat Mass Transfer 12 (1969) 803.

    Google Scholar 

  37. A. Garcia and T. W. Clyne, “Solidification Technology in the Foundry and Casthouse” (Metals Society, London, 1983) p. 33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, R.G., Garcia, A. Analytical technique for the determination of solidification rates during the inward freezing of cylinders. J Mater Sci 18, 3578–3590 (1983). https://doi.org/10.1007/BF00540730

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540730

Keywords

Navigation