Journal of Materials Science

, Volume 27, Issue 10, pp 2763–2769 | Cite as

Modelling of the toughening mechanisms in rubber-modified epoxy polymers

Part II A quantitative description of the microstructure-fracture property relationships
  • Y. Huang
  • A. J. Kinloch


A mathematical model has been developed to quantify the relationships between the microstructure and fracture properties of multiphase rubber-toughened epoxy polymers. Good agreement between predictions from the model and experimental results have been found. The model also reveals that localized plastic shear banding in the epoxy matrix, running between the rubbery particles, is the dominating mechanism under all testing conditions. Plastic void growth in the epoxy matrix is the other main toughening mechanism. This latter mechanism is initiated by internal cavitation of the rubbery particle, or by debonding at the particle-matrix interface, and is particularly significant at higher test temperatures.


Epoxy Cavitation Fracture Property Shear Banding Epoxy Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Kunz-Douglass, P. W. R. Beaumont and M. F. Ashby, J. Mater. Sci. 15 (1980) 1109.CrossRefGoogle Scholar
  2. 2.
    A. G. Evans, Z. B. Ahmad, D. G. Gilbert and P. W. R. Beaumont, Acta Metall. 34 (1986) 79.CrossRefGoogle Scholar
  3. 3.
    A. F. Yee, in “Polymer blends: conference proceedings” (Plastics and Rubber Institute, London, 1990) p. EK1/1.Google Scholar
  4. 4.
    A. J. Kinloch, in “Rubber-toughened plastics”, edited by C. K. Riew, Advances in Chemistry Series, vol. 222 (American Chemical Society, Washington, D.C., 1989) p. 67.CrossRefGoogle Scholar
  5. 5.
    A. J. Kinloch, S. J. Shaw and D. L. Hunston, Polymer 24 (1983) 1355.CrossRefGoogle Scholar
  6. 6.
    R. A. Pearson and A. F. Yee, J. Mater. Sci. 21 (1986) 2475.CrossRefGoogle Scholar
  7. 7.
    Y. Huang and A. J. Kinloch, J. Mater. Sci. 27 (1992) 2753.CrossRefGoogle Scholar
  8. 8.
    Idem., J. Mater. Sci. Lett., in press.Google Scholar
  9. 9.
    A. J. Kinloch and R. J. Young, “Fracture behaviour of polymers” (Applied Science Publishers Ltd, London, 1983).Google Scholar
  10. 10.
    P. B. Bowden, in “The physics of glassy polymers”, edited by R. N. Haward (Applied Science Publishers Ltd, London, 1975).Google Scholar
  11. 11.
    J. N. Sultan and F. J. McGarry, Polymer Engng Sci. 13 (1973) 29.CrossRefGoogle Scholar
  12. 12.
    J. W. Smith, “Deformation induced failure mechanisms in particulate filled epoxy resins”, PhD thesis, Ecole Polytechnique Federate de Lausanne (1989).Google Scholar
  13. 13.
    J. R. Rice and G. F. Rosengren, J. Mech. Phys. Solids 16 (1968) 1.CrossRefGoogle Scholar
  14. 14.
    J. W. Hutchinson, J. Mech. Phys. Solids 16 (1968) 13.CrossRefGoogle Scholar
  15. 15.
    J. G. Williams and H. Ford, J. Mech. Engng Sci. 6 (1964) 7.CrossRefGoogle Scholar
  16. 16.
    J. F. Knott, “Fundamentals of fracture mechanics” (Butterworths, London, 1979).Google Scholar
  17. 17.
    S. C. Kunz and P. W. R. Beaumont, J. Mater. Sci. 16 (1981) 3141.CrossRefGoogle Scholar
  18. 18.
    A. J. Kinloch, C. A. Finch and S. Hashemi, Polymer Commun. 28 (1987) 229.Google Scholar
  19. 19.
    Y. Huang, “Microstructure-property relationships in toughened epoxy polymers”, PhD thesis, University of London (1991).Google Scholar
  20. 20.
    D. L. Hunston, A. J. Kinloch, S. J. Shaw and S. S. Wang, “Adhesive joints”, edited by K. L. Mittal (Plenum Press, New York, 1984) p. 789.CrossRefGoogle Scholar
  21. 21.
    D. L. Hunston and G. W. Bullman, Int. J. Adhesion Adhesives 5 (1985) 69.CrossRefGoogle Scholar
  22. 22.
    R. A. Pearson and A. F. Yee, J. Mater. Sci. 24 (1989) 2571.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Y. Huang
    • 1
  • A. J. Kinloch
    • 1
  1. 1.Department of Mechanical EngineeringImperial College of Science, Technology and MedicineLondonUK

Personalised recommendations