Journal of Materials Science

, Volume 27, Issue 10, pp 2726–2730 | Cite as

Formation of SiC whiskers from silicon nitride

  • R. V. Krishna Rao
  • M. M. Godkhindi


Attempts have been made to produce SiC whiskers through vacuum pyrolysis of Si3N4 without any addition of extraneous carbon. Vacuum pyrolysis of Si3N4 granules and powder compacts, has been carried out at 1550 and 1700°C using a graphite resistance furnace. The products of pyrolysis have been identified through XRD and SEM as SiC whiskers and particles. Small amounts of elemental silicon at 1550°C and free carbon at 1700°C have been detected through X-ray diffraction. Detection of elemental silicon through X-ray diffraction and solidified silicon droplets at the whisker tips in the SEM provide important clues regarding the mechanism of SiCw formation, as the one involving the reaction 2Si(l) + CO(g) → SiC(s) + SiO(g) Silicon carbide whiskers, 3–4 mm long, have been grown from Si3N4 compacts at 1550°C over a short period of 0.5 h. It has been shown in the present study that Si3N4 can be completely converted to SiCw, when a loose bed of Si3N4 in the form of granules is pyrolysed in the presence of CO at about 1550°C.


Carbide Pyrolysis Nitride Powder Compact Silicon Carbide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. Lee and I. B. Cutler, J Amer. Ceram. Soc. Bull. 54 (1975) 195.Google Scholar
  2. 2.
    S. M. Lakiza and Yu. P. Dyban, Sov. Powder. Metall. Met. Ceram. 21 (1982) 117 (English Translation).Google Scholar
  3. 3.
    N. K. Sharma, W. S. Williams, and A. Zangvil, J. Amer. Ceram. Soc. 67 (1984) 715.CrossRefGoogle Scholar
  4. 4.
    C. C. Chou and Y. C. Ko, J. Mater. Sci. Lett. 5 (1986) 209.CrossRefGoogle Scholar
  5. 5.
    J. V. Milewski, F. D. Gac, J. J. Petrovic and S. R. Skuggs, J. Mater. Sci. 20 (1985) 1160.CrossRefGoogle Scholar
  6. 6.
    C. E. Ryan, I. Berman, R. C. Marshall, D. P. Considine and J. J. Hawley, J. Crystal Growth. 1 (1967) 255.CrossRefGoogle Scholar
  7. 7.
    J. A. Powell, J. Appl. Phys. 40 (1969) 4660.CrossRefGoogle Scholar
  8. 8.
    A. Addamiano, ibid. 58 (1982) 617.Google Scholar
  9. 9.
    W. F. Knippenberg and G. Verspui, “Silicon Carbide 1972”, edited by R. C. Marshall, J. W. Faust Jr and C. E. Rayan (University of South Carolina Press, 1973) p. 108.Google Scholar
  10. 10.
    K. Yamada and S. Tabisawa, J. Amer. Ceram. Soc. 72 (1989) 2211.CrossRefGoogle Scholar
  11. 11.
    Tokai High-Temperature Industries Company Ltd., Japanese Pat. Showa-60-131 (1985) p. 899.Google Scholar
  12. 12.
    S. Yamada, S. Kimura, E. Yasuda, Y. Tanabe and Y. Asami, J. Mater. Res. 3 (1988) 538.CrossRefGoogle Scholar
  13. 13.
    J. Weiss, H. L. Lukas, J. Lorenz, G. Petzow and H. Krieg, CALPHAD 5 (1981) 125.CrossRefGoogle Scholar
  14. 14.
    J. Lorenz, E. E. Hucke, H. L. Lukas and G. Petzow, in “Ceramic Powders”, edited by P. Vincenzini (Elsevier Scientific, Amsterdam, 1983) p. 479.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • R. V. Krishna Rao
    • 1
  • M. M. Godkhindi
    • 1
  1. 1.Department of Metallurgical EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations