Skip to main content
Log in

Yield and transient effects during the plastic deformation of solid polymers

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tensile tests were performed on seven commercial polymers at 22° C and at constant true strain rates of 10−4 to 10−1 sec−1. The constant strain rates were imposed on the minimum section of each sample with the aid of a diametral transducer, an exponential function generator and a closed-loop hydraulic testing machine. The polymers investigated were: high and low density polyethylene, polytetrafluoroethylene, polypropylene. polyvinylchloride and polyamide 6 and 66. True yield drops were observed in the rigid glassy polymers, whereas yielding was more gradual in the semi-crystalline or plasticized polymers. Strain rate change tests were also performed, during which one order of magnitude increases and decreases were imposed on the specimens. “Normal” transients were observed at small strains in the samples containing a rubbery phase, while the transients were of an “inverse” nature in the samples containing a glassy phase. With an increase in the strain at which the change was initiated, the “normal” transients changed in character to “inverse”. Transient tests were also performed in which straining was interrupted to permit a period of stress relaxation or of holding in the unloaded condition prior to the resumption of straining. A quantitative model is proposed, based on the dynamics of plastic waves which accounts for the transition from “normal” to “inverse” transient behaviour with increasing strain, and also explains the opposite effects of stress relaxation and of specimen unloading on the restraining transients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. G'Sell and J. J. Jonas, J. Mater. Sci. 14 (1979) 583.

    Google Scholar 

  2. P. W. Bridgman, Trans. Amer. Soc. Met. 32 (1944) 553.

    Google Scholar 

  3. R. Hill, “Mathematical Theory of Plasticity” (Oxford University Press, Oxford, 1950) p. 272.

    Google Scholar 

  4. P. F. Thomason, Int. J. Mech. Sci. 11 (1969) 481.

    Google Scholar 

  5. A. Needleman, J. Mech. Phys. Sol. 20 (1972) 111.

    Google Scholar 

  6. E. J. Kramer, J. Appl. Phys. 41 (1970) 4327.

    Google Scholar 

  7. J. M. Andrews and I. M. Ward, J. Mater. Sci. 5 (1970) 411.

    Google Scholar 

  8. S. Bahadur, Polymer Eng. Sci. 13 (1973) 266.

    Google Scholar 

  9. A. Cross and R. N. Haward, J. Polymer Sci. 11 (1973) 2423.

    Google Scholar 

  10. R. N. Haward and G. Thackray, Proc. Roy. Soc. A302 (1968) 453.

    Google Scholar 

  11. P. I. Vincent, Polymer 1 (1960) 7.

    Google Scholar 

  12. N. Brown and I. M. Ward, J. Polymer Sci. A-2 6 (1968) 607.

    Google Scholar 

  13. G. Meinel and A. Peterlin, ibid. 9 (1971) 67.

    Google Scholar 

  14. N. J. Mills, Brit. Polymer J. 10 (1978) 1.

    Google Scholar 

  15. I. H. Hall, J. Appl. Polymer Sci. 12 (1968) 731.

    Google Scholar 

  16. A. S. Korhonen and H. J. Kleemola, Met. Trans. A 9A (1978) 979.

    Google Scholar 

  17. H. Conrad, Acta Met. 6 (1968) 339.

    Google Scholar 

  18. J. P. Immarigeon and J. J. Jonas, ibid. 19 (1971) 1053.

    Google Scholar 

  19. U. F. Kocks, A. S. Argon and M. F. Ashby, Prog. Mater. Sci. 19 (1975) 257.

    Google Scholar 

  20. Z. S. Basinski, P. J. Jackson and M. S. Duesbery, Phil. Mag. 36 (1977) 255.

    Google Scholar 

  21. E. Pink, Mater. Sci. Eng. 23 (1976) 275.

    Google Scholar 

  22. L. E. Nielsen, “Mechanical Properties of Polymers” (Reinhold Publ. Co., New York, 1962).

    Google Scholar 

  23. J. D. Ferry, “Viscoelastic Properties of Polymers” (J. Wiley, New York, 1961) pp. 9, 41, 63.

    Google Scholar 

  24. J. R. McLoughlin and A. V. Tobolsky, J. Colloid. Sci. 7 (1952) 555.

    Google Scholar 

  25. J. J. Jonas, R. A. Holt and C. E. Coleman, Acta Met. 24 (1976) 911.

    Google Scholar 

  26. A. K. Ghosh, ibid. 25 (1977) 1413.

    Google Scholar 

  27. J. M. Andrews and I. M. Ward, J. Mater. Sci. 5 (1970) 411.

    Google Scholar 

  28. I. M. Ward, ibid. 6 (1971) 1397.

    Google Scholar 

  29. C. Bauwens-Crowet, J. M. Ots and J. C. Bauwens, ibid. 9 (1974) 1197.

    Google Scholar 

  30. D. G. Fotheringham and B. W. Cherry, ibid. 13 (1978) 231.

    Google Scholar 

  31. Idem, ibid. 13 (1978) 951.

    Google Scholar 

  32. I. L. Hay and A. Keller, Kolloid Z. und Z. Polymere 204 (1965) 43.

    Google Scholar 

  33. R. Hoseman, J. Loboda-Čačkovič and H. Čačkovič, J. Mater. Sci. 7 (1972) 963.

    Google Scholar 

  34. J. C. M. Li, Metall. Trans. 9A (1978) 1353.

    Google Scholar 

  35. J. L. Kardos and J. Raisoni, Polymer Eng. Sci. 15 (1975) 183.

    Google Scholar 

  36. V. Petraccone, I. C. Sanchez and R. S. Stein, Polymer Sci., Phys. Ed. 13 (1975) 1991.

    Google Scholar 

  37. L. R. G. Treloar, Rep. Prag. Phys. 36 (1973) 755.

    Google Scholar 

  38. Idem, Trans. Faraday Soc. 39 (1943) 36.

    Google Scholar 

  39. C. Bauwens-Crowet, J. Mater. Sci. 8 (1973) 968.

    Google Scholar 

  40. S. H. Joseph, J. Polymer Sci. 16 (1978) 1971.

    Google Scholar 

  41. A. S. Argon, Phil. Mag. 28 (1973) 839.

    Google Scholar 

  42. P. B. Bowden and S. Raha, ibid. 29 (1975) 149.

    Google Scholar 

  43. E. Pink, Rev. Deform. Behav. Mater. 2 (1977) 37.

    Google Scholar 

  44. B. Escaig and J. M. Lefebvre, Rev. Phys. Appl. 13 (1978) 285.

    Google Scholar 

  45. B. Escaig, Ann. Phys. 3 (1978) 207.

    Google Scholar 

  46. J. A. Brydson, in “Polymer Science” edited by A. D. Jenkins (North Holland, Amsterdam, 1972) pp. 194–249.

    Google Scholar 

  47. G. T. Furukawa, R. E. McCoskey and G. J. King, J. Res. Nat. Bur. Stand. 49 (1952) 273.

    Google Scholar 

  48. J. B. C. Wu and J. C. M. Li, J. Mater. Sci. 11 (1976) 434.

    Google Scholar 

  49. P. B. Bowden and S. Raha, Phil. Mag. 22 (1970) 463.

    Google Scholar 

  50. R. E. Robertson, J. Polymer Sci. A2 7 (1969) 1315.

    Google Scholar 

  51. P. B. Bowden and R. J. Young, J. Mater. Sci. 9 (1974) 2034.

    Google Scholar 

  52. W. G. Johnston, J. Appl. Phys. 33 (1962) 2716.

    Google Scholar 

  53. N. Brown and I. M. Ward, J. Polymer Sci. A2 6 (1968) 607.

    Google Scholar 

  54. F. Guiu and P. L. Pratt, Phys. Stat. Sol. 6 (1964) 111.

    Google Scholar 

  55. H. Eyring, J. Chem. Phys. 4 (1936) 283.

    Google Scholar 

  56. W. Wu and A. P. L. Turner, J. Polymer Sci. 11 (1973) 2199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

G'Sell, C., Jonas, J.J. Yield and transient effects during the plastic deformation of solid polymers. J Mater Sci 16, 1956–1974 (1981). https://doi.org/10.1007/BF00540644

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540644

Keywords

Navigation