Journal of Materials Science

, Volume 23, Issue 10, pp 3519–3527 | Cite as

Crystallization embrittlement of Ni-Ti-B glasses

  • D. G. Morris
  • N. Merk
  • M. A. Morris


While metallic glasses have excellent toughness and ductility in the as-cast and unrelaxed state, the process of crystallization leads to a nearly continuous and significant embrittlement. This change is examined on three Ni-Ti-B glasses and related to the morphology and distribution of the crystals obtained. For the partially crystallized materials, failure still occurs after intense shear on one well-defined shear plane, and it is shown how the crystals act as stress and strain incompatibilities causing localized crack or cavity formation. The relationships between sample mechanical properties, fracture surface characteristics and crystal distributions allow an analysis of cavity nucleation and growth rates, and thereby make it possible to suggest microstructures which may maintain reasonable toughness.


Microstructure Crystallization Ductility Fracture Surface Surface Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Kimura and T. Masumoto, in “Amorphous Metallic Alloys”, edited by F. E. Luborsky (Butterworths, London, 1983) p. 187.Google Scholar
  2. 2.
    L. A. Davies, in “Metallic Glasses” (ASM, Metals Park, Ohio, 1978) p. 191.Google Scholar
  3. 3.
    T. Masumoto and R. Maddin, Acta Metall. 19 (1971) 725.Google Scholar
  4. 4.
    R. L. Freed and J. B. Vandersande, ibid. 28 (1980) 103.Google Scholar
  5. 5.
    C. A. Pampillo, J. Mater. Sci. 10 (1975) 1194.Google Scholar
  6. 6.
    A. S. Argon, J. Im and R. Safoglu, Met. Trans. 64 (1975) 825.Google Scholar
  7. 7.
    P. G. Zielinski and D. G. Ast, Acta Metal. 32 (1984) 397.Google Scholar
  8. 8.
    E. Smith, in “Physical Basis of Yield and Fracture”, Conference Proceedings Inst. Phys. Soc., Oxford (1966) p. 36.Google Scholar
  9. 9.
    E. Smith, Met. Sci. J. 1 (1967) 56.Google Scholar
  10. 10.
    Idem., ibid. 1 (1967) 1.Google Scholar
  11. 11.
    A. S. Argon, J. Eng. Mater. Tech. 98 (1976) 60.Google Scholar
  12. 12.
    N. Merk, D. G. Morris and M. A. Morris, J. Mater. Sci. B769.Google Scholar
  13. 13.
    N. Merk, D. G. Morris and P. Stadelmann, Acta Metall. 35 (1987) 2213.Google Scholar
  14. 14.
    G. Gerard and A. C. Gilbert, J. Appl. Mech. (ASME) 24 (1957) 355.Google Scholar
  15. 15.
    P. E. Donovan, Mat. Res. Soc. Symp. Proc. 28 (1984) 197.Google Scholar
  16. 16.
    H. Neuhauser, Scripta Metall. 12 (1978) 471.Google Scholar
  17. 17.
    H. Kimura, T. Masumoto and D. G. Ast, Acta Metall. 35 (1987) 1757.Google Scholar
  18. 18.
    H. R. Hilzinger and G. Herzer, Mater. Sci. Engng in press.Google Scholar

Copyright information

© Chapman and Hall Ltd 1988

Authors and Affiliations

  • D. G. Morris
    • 1
  • N. Merk
    • 1
  • M. A. Morris
    • 1
  1. 1.Institute of Structural MetallurgyUniversity of NeuchâtelNeuchâtelSwitzerland

Personalised recommendations