Skip to main content
Log in

Coaxial line methods for measuring permittivity and dielectric loss

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two coaxial line techniques for the determination of complex permittivities of solid and liquids are described. The first, the matched termination method, is essentially a comparison technique using air as the reference dielectric, producing accurate values of ε′. In the second, the resonant line method, the characteristic impedance termination is replaced by an adjustable short circuit. This method was developed primarily for the purpose of determining the values of tan δ in low loss materials. Both methods can be used for frequencies in the 200 MHz to 9 GHz range and normally require only conventional apparatus. The results obtained for the materials under test agreed well with the published data, thus underlining the suitability of the two techniques for dielectric measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Young, Microwave J. 5 (1962) 79.

    Google Scholar 

  2. H. N. Dawirs, IEEE Trans. Microwave Theory Techniques 17 (1969) 127.

    Google Scholar 

  3. M. F. Iskander and S. S. Stuchly, IEEE Trans. Instrum. Meas. 27 (1978) 107.

    Google Scholar 

  4. M. J. C. Van Gemert, Adv. Molec. Relaxation Processes 6 (1974) 123.

    Google Scholar 

  5. M. Sucher and J. Fox (eds), “Handbook of Microwave Measurements”, 3rd edn (Polytechnic Press, Brooklyn NY, 1963).

    Google Scholar 

  6. T. S. Saad, “Microwave Engineers Handbook” (Artech House Inc., MA, 1971).

    Google Scholar 

  7. B. O. Winschel, Proc. IEEE 55 (1967) 923.

    Google Scholar 

  8. A. A. Maryott and E. R. Smith, “Tables of Dielectric Constants of Pure Liquids”, NBS Circular No. 514 (National Bureau of Standards, Washington DC, 1951).

    Google Scholar 

  9. F. Buckley and A. A. Maryott, “Tables of Dielectric Dispersion Data for Pure Liquids and Dilute Solutions”, NBS Circular No. 589 (National Bureau of Standards, Washington, DC, 1958).

    Google Scholar 

  10. “Handbook of the American Institute of Physics”, 2nd edn (McGraw-Hill, New York, 1963).

  11. J. B. Hasted, in “Water: A Comprehensive Treatise” Vol. I, edited by F. Franks (Plenum Press, New York, 1972) Chap. 7.

    Google Scholar 

  12. N. R. V. Nightingale, S. Szwarnowski, R. J. Sheppard and E. H. Grant, J. Phys. E. 14 (1981) 156.

    Google Scholar 

  13. E. A. Nicol and N. E. Hill, J. Phys. C. 3 (1970) 2207.

    Google Scholar 

  14. A. R. Von Hippel (ed.), “Dielectric Materials and Applications” (M.I.T. Press, Cambridge, MA, 1954) p. 334.

    Google Scholar 

  15. W. Wunderlich, in “Polymer Handbook”, 2nd edn, edited by J. Brandrup and E. H. Immergut (Wiley Interscience, New York, 1975) p. V-55.

    Google Scholar 

  16. T. Moreno, “Microwave Transmission Design Data” (Dover Publications, New York, 1948).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulesza, B.L.J., Thorp, J.S. & Ahmad, A.B. Coaxial line methods for measuring permittivity and dielectric loss. J Mater Sci 19, 915–922 (1984). https://doi.org/10.1007/BF00540461

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540461

Keywords

Navigation