Skip to main content
Log in

Electrical conductivity/microstructural relationships in aged CaO and CaO + MgO partially-stabilized zirconia

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Samples of CaO and CaO + MgO partially-stabilized zirconia (PSZ), solution treated at 1830° C and aged at 1400° C to produce a fine dispersion of tetragonal precipitates, were subjected to a.c. electrical measurements in the frequency range 10−3 to 106 Hz, at a temperature of 300° C. The component of resistivity due to the grain interiors, obtained from plots of complex resistivity, showed three stages of behaviour, attributed to equilibration, coarsening and finally transformation of a tetragonal precipitate into a more resistive monoclinic phase. A model of the electrical response of a dispersion of particles was used to estimate the conductivities of the constituent phases of the PSZ ceramic and to simulate the complex resistivity data obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Garvie, R. H. J. Hannink and R. T. Pascoe, Nature 258 (1975) 703.

    Google Scholar 

  2. R. V. Wilhelm and D. S. Eddy, Ceram. Bull. 56 (1977) 509.

    Google Scholar 

  3. B. C. H. Steele, J. Drennan, R. K. Slotwinski, N. Bonanos and E. P. Butler, in “Science and Technology of Zirconia”, Advances in Ceramics, Vol. 3, edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Columbus, Ohio, 1981) p. 286.

    Google Scholar 

  4. R. E. Carter and W. L. Roth, in “EMF Measurements in High Temperature Systems”, edited by C. B. Alcock (IMM, London, 1968) p. 125.

    Google Scholar 

  5. T. H. Etsell and S. N. Flengas, Chem. Rev. 70 (1970) 339.

    Google Scholar 

  6. R. T. Pascoe, R. R. Hughan and R. C. Garvie, Sci. Sintering 11 (1979) 185.

    Google Scholar 

  7. R. H. J. Hannink, K. A. Johnston, R. T. Pascoe and R. C. Garvie, in “Science and Technology of Zirconia”, Advances in Ceramics, Vol. 3, edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Columbus, Ohio, 1981) p. 116.

    Google Scholar 

  8. R. C. Garvie, R. H. J. Hannink and C. Urbani, Ceramurgia 6 (1980) 19.

    Google Scholar 

  9. R. T. Pascoe, R. H. J. Hannink and R. C. Garvie, Sci. Ceram. 9 (1977) 447.

    Google Scholar 

  10. D. L. Porter and A. H. Heuer, J. Amer. Ceram. Soc. 60 (1977) 183.

    Google Scholar 

  11. Idem, ibid. 62 (1979) 298.

    Google Scholar 

  12. K. Kobayashi, H. Kuwajima and T. Masaki, Solid State Ionics 3/4 (1981) 489.

    Google Scholar 

  13. A. G. Evans and A. H. Heuer, J. Amer. Ceram. Soc. 63 (1980) 241.

    Google Scholar 

  14. R. K. Slotwinski, N. Bonanos, B. C. H. Steele and E. P. Butler, in “Engineering with Ceramics”, Proceedings of the British Ceramic Society, Vol. 32, edited by R. W. Davidge (The British Ceramic Society, Stoke-on-Trent, 1982) p. 41.

    Google Scholar 

  15. J. E. Bauerle, J. Phys. Chem. Solids 30 (1969) 2657.

    Google Scholar 

  16. J. M. Wimmer, H. C. Graham and N. M. Tallan, in “Electrical Conduction in Ceramics and Glasses”, edited by N. M. Tallan (Marcel Decker, New York, 1974) Part B, p. 619.

    Google Scholar 

  17. R. E. Meredith and C. W. Tobias, in “Advances in Electrochemistry and Electrochemical Engineering” Vol. 2, edited by C. W. Tobias (Interscience, New York, London, 1962) p. 15.

    Google Scholar 

  18. H. Fricke, Phys. Rev. 24 (1924) 575.

    Google Scholar 

  19. Idem., J. Phys. Chem. 57 (1953) 934.

    Google Scholar 

  20. R. J. H. Hannink, J. Mater. Sci. 13 (1978) 2487.

    Google Scholar 

  21. J. R. MacDonald, in “Electrode Processes in Solid State Ionics”, edited by M. Kleitz and J. Dupuis (D. Reidel, New York, 1976).

    Google Scholar 

  22. J. C. Maxwell, “A Treatise in Electricity and Magnetism”, 2nd edn (Clarendon Press, Oxford, 1881).

    Google Scholar 

  23. K. W. Wagner, Archiv fur Elektrotechnik 2 (1914) 371.

    Google Scholar 

  24. R. C. Garvie and P. S. Nicholson, J. Amer. Ceram. Soc. 55 (1972) 303.

    Google Scholar 

  25. V. S. Stubican and S. P. Ray, ibid. 60 (1977) 534.

    Google Scholar 

  26. A. Nakamura and J. B. Wagner, J. Electrochem. Soc. 127 (1980) 2325.

    Google Scholar 

  27. F. K. Moghadam, T. Yamashita and D. A. Stevenson, in “Science and Technology of Zirconia”, Advances in Ceramics, Vol. 3, edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Columbus, Ohio, 1981) p. 364.

    Google Scholar 

  28. F. K. Moghadam and D. A. Stevenson, J. Amer. Ceram. Soc. 65 (1982) 213.

    Google Scholar 

  29. C. C. Liang, J. Electrochem. Soc. 120 (1973) 1289.

    Google Scholar 

  30. J. Drennan et al., to be published.

  31. I. M. Hodge, M. D. Ingram and A. R. West, J. Electroanal. Chem. 74 (1976) 125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonanos, N., Slotwinski, R.K., Steele, B.C.H. et al. Electrical conductivity/microstructural relationships in aged CaO and CaO + MgO partially-stabilized zirconia. J Mater Sci 19, 785–793 (1984). https://doi.org/10.1007/BF00540449

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540449

Keywords

Navigation