Skip to main content
Log in

Dielectric properties of polycrystalline CaTiO3 doped with yttrium oxide

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Y3+ was substituted for Ca2+ in polycrystalline CaTiO3 in amounts up to 15 at %. Sintering conditions (1450° C, 15 h) were such that grain sizes were > 25 μm. Stoichiometry was adjusted on the assumption that the excess charge of the dopant was compensated by the creation of calcium vacancies. This assumption was supported by measurements of the Ca/Ti ratio in the grains by electron-probe microanalysis. Unlike yttrium-doped SrTiO3, material sintered in air was light-coloured with no evidence of semiconductivity. On the other hand, when sintering was done in nitrogen, dielectric relaxation characteristic of boundary layers was observed for dopant levels > 1 mol %. The experimental data support the view that dielectric relaxation in SrTiO3 and CaTiO3 results from semiconducting grains with resistive surface layers and that the semiconductivity arises because oxygen loss from the grains during sintering is increased by “donor” doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Burn and S. Neirman, J. Mater. Sci. 17 (1982) 3510.

    Google Scholar 

  2. L. Hanke and H. Schmelz, Ber. DKG 59 (1982) 221.

    Google Scholar 

  3. R. Wernicke, Phys. Status Solidi (A) 47 (1978) 139.

    Google Scholar 

  4. T. Y. Tien and L. E. Cross, Jap. J. Appl. Phys. 6 (1967) 459.

    Google Scholar 

  5. D. W. Johnson, L. E. Cross and F. A. Hummel, J. Appl. Phys. 41 (1970) 2828.

    Google Scholar 

  6. O. Saburi, J. Phys. Soc. Jap. 14 (1959) 1159.

    Google Scholar 

  7. U. Balachandran and N. G. Eror, J. Mater. Sci. 17 (1982) 1795.

    Google Scholar 

  8. R. K. Sharma, N. H. Chan and D. M. Smyth, J. Amer. Ceram. Soc. 64 (1981) 448.

    Google Scholar 

  9. P. E. C. Franken, M. P. A. Viegers and A. P. Gehring, ibid. 64 (1981) 687.

    Google Scholar 

  10. R. Wernicke, Philips Res. Reports 31 (1976) 526.

    Google Scholar 

  11. W. Heywang, J. Amer. Ceram. Soc. 47 (1964) 484.

    Google Scholar 

  12. G. I. Skanavi and E. N. Matveeva, Sov. Phys. 3 (1957) 905.

    Google Scholar 

  13. A. K. Mehrotra and D. A. Payne, Bull. Amer. Ceram. Soc. 61 (1982) 428 (Abs.).

    Google Scholar 

  14. S. Shirasaki, Y. Yamamura, H. Haneda, K. Kakegawa and J. Moori, J. Chem. Phys. 73 (1980) 4640.

    Google Scholar 

  15. S. Shirasaki, M. Tsukioka, H. Yamamura, H. Oshima and K. Kakegawa, Solid State Commun. 19 (1976) 721.

    Google Scholar 

  16. H. Brauer, Us Pat. 3 569 802 (1971).

  17. S. Waku, Rev. Electr. Commun. Lab. 15 (1967) 689.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neirman, S., Burn, I. Dielectric properties of polycrystalline CaTiO3 doped with yttrium oxide. J Mater Sci 19, 737–744 (1984). https://doi.org/10.1007/BF00540443

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540443

Keywords

Navigation