Advertisement

Journal of Materials Science

, Volume 17, Issue 7, pp 2087–2094 | Cite as

Thermally stimulated currents in lithium-sodium disilicate glasses

  • Akira Doi
Papers

Abstract

Thermally stimulated polarization and depolarization currents were measured for thin films of lithium-sodium disilicate glasses. As reported previously two thermally stimulated depolarization current peaks were found. The low-temperature peak was attributed to conduction polarization of alkali ions, while the high-temperature was attributed to localized motion of non-bridging oxygens in the alkali-depleted region near the anode rather than to space charge or interfacial polarization, as proposed earlier. Although the high-temperature peak was dominant under medium polarizing conditions, it was swept away irreversibly by biasing at extremely high electric field.

Keywords

Oxygen Polymer Thin Film Space Charge Polarize Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Doi, J. Appl. Phys. 50 (1979) 1291.Google Scholar
  2. 2.
    C. M. Hong and D. E. Day, J. Mater. Sci. 14 (1979) 2493.Google Scholar
  3. 3.
    Idem, J. Appl. Phys. 50 (1979) 5352.Google Scholar
  4. 4.
    A. Doi, Jap. J. Appl. Phys. 19 (1980) 2085.Google Scholar
  5. 5.
    A. Doi and D. E. Day, J. Mater Sci. 15 (1980) 3047.Google Scholar
  6. 6.
    C. M. Hong and D. E. Day, J. Amer. Ceram. Soc. 64 (1981) 61.Google Scholar
  7. 7.
    A. Doi and D. E. Day, J. Appl. Phys. 52 (1981) 3433.Google Scholar
  8. 8.
    A. Doi, J. Mater. Sci. 16 (1981) 2028.Google Scholar
  9. 9.
    R. J. Charles, J. Amer. Ceram. Soc. 46 (1963) 235.Google Scholar
  10. 10.
    H. Namikawa, J. Non-cryst. Sol. 14 (1974) 88.Google Scholar
  11. 11.
    A. Agarwal, PhD thesis, University of Missouri-Rolla, USA (1980).Google Scholar
  12. 12.
    V. Provenzano, L. P. Boesch, V. Volterra, C. T. Moynihan and P. B. Macedo, J. Amer. Ceram. Soc. 55 (1972) 492.Google Scholar
  13. 13.
    J. R. Hendrickson and P. J. Bray, J. Chem. Phys. 61 (1974) 2754.Google Scholar
  14. 14.
    G. J. Exarhos and W. M. Risen, Jr, Sol. Stat. Commun. 11 (1972) 755.Google Scholar
  15. 15.
    W. Müller-Warmuth, F. Krämer and H. Dutz, 9th International Congress on Glass Science Technology (Institute de Verre, Paris, 1971) p. 303.Google Scholar
  16. 16.
    R. J. Charles, J. Amer. Ceram. Soc. 49 (1966) 55.Google Scholar
  17. 17.
    G. J. Exarhos, P. J. Miller and W. M. Risen, Jr, J. Chem. Phys. 60 (1974) 4145.Google Scholar
  18. 18.
    G. B. Rouse, Jr, P. J. Miller and W. M. Risen, Jr. J. Non-cryst. Sol. 28 (1978) 193.Google Scholar
  19. 19.
    J. P. Lacharme and J. O. Isard. J. Non-cryst Sol. 27 (1978) 381.Google Scholar
  20. 20.
    P. M. Sutton, J. Amer. Ceram. Soc. 47 (1964) 219.Google Scholar
  21. 21.
    D. E. Carlson, K. W. Hang and G. F. Stockdale, ibid. 55 (1972) 337.Google Scholar
  22. 22.
    K. Takizawa, ibid. 61 (1978) 475.Google Scholar
  23. 23.
    T. Mizutani, Y. Suzuoki and M. Ieda, J. Appl. Phys. 48 (1977) 2408.Google Scholar
  24. 24.
    A. Linkens, P. Parot, J. Vanderschueren and J. Gasiot, Compt. Phys. Commun. 13 (1978) 411.Google Scholar

Copyright information

© Chapman and Hall Ltd 1982

Authors and Affiliations

  • Akira Doi
    • 1
  1. 1.Department of Inorganic MaterialsNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations