Journal of Materials Science

, Volume 17, Issue 7, pp 1963–1976 | Cite as

Compressive fracture of polystyrene

  • D. Kells
  • N. J. Mills


Polystyrene cylinders and blocks were compressed with a variety of flat indentors until fracture occurred. The test cannot be interpreted solely by slip-line field theory, nor solely using Kendall's theory for the splitting of pre-cracked blocks of elastic material. A slip-line field analysis was made of the stress variation within the yielded zone beneath the indentor, then a boundary element analysis was made of the remaining cracked elastic region. This predicted stress intensity factors that are of the correct magnitude for the observed crack velocity.


Field Theory Polystyrene Stress Intensity Intensity Factor Stress Intensity Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Kambour, J. Polymer Sci. D 7(1973) 1.Google Scholar
  2. 2.
    P. B. Bowden, in “The Physics of Glassy Polymers” edited by R. N. Haward (Applied Science Publishers, London, 1973).Google Scholar
  3. 3.
    P. J. F. Wright, Mag. Concrete Res. 7 (1955) 87.Google Scholar
  4. 4.
    D. Kells and N. J. Mills, Phil Mag. A44 (1981) 1149.Google Scholar
  5. 5.
    R. J. Izbicki, Bull. Acad. Pol. Sci., Ser. des Sci. Tech. 20 (1972) 255.Google Scholar
  6. 6.
    W. F. Chen, “Limit Analysis and Soil Plasticity” (Elsevier, Amsterdam, New York and Oxford, 1975).Google Scholar
  7. 7.
    R. J. Oxborough and P. B. Bowden, Phil. Mag. 28 (1973) 547.Google Scholar
  8. 8.
    K. Kendall, Proc. Roy. Soc. A361 (1978) 245.Google Scholar
  9. 9.
    N. J. Mills, J. Mater. Sci. 16 (1981) 1317.Google Scholar
  10. 10.
    G. P. Marshall, L. E. Culver and J. G. Williams, Int. J. Fracture 9 (1973) 295.Google Scholar
  11. 11.
    D. Kells, PhD thesis, University of Birmingham (1979).Google Scholar
  12. 12.
    W. A. Backofen, “Deformation Processing” (Addison-Wesley, Philippines, 1972) Chap. 7.Google Scholar
  13. 13.
    J. A. Hooper, J. Mech. Phys. Sol. 19 (1971) 179.Google Scholar
  14. 14.
    K. Friedrich, Prakt. Metallogr. 12 (1975) 587.Google Scholar
  15. 15.
    M. J. Doyle, A. Maranci, E. Orawan and S. T. Stork, Proc. Roy. Soc. A329 (1972) 137.Google Scholar
  16. 16.
    M. J. Doyle, J. Mater. Sci. 10 (1975) 159.Google Scholar
  17. 17.
    K. Friedrich, Colloid Polymer Sci. 259 (1981) 190.Google Scholar
  18. 18.
    R. D. Andrews and J. F. Rudd, J. Appl. Phys. 28 (1957) 1091.Google Scholar
  19. 19.
    A. G. Evans, J. Mater. Sci. 7 (1972) 1137.Google Scholar
  20. 20.
    E. J. Kramer, in “Developments in Polymer Fracture” edited by E. H. Andrews (Applied Science Publishers, London, 1979) Table 1.Google Scholar
  21. 21.
    B. L. Karihaloo, Proc. Roy. Soc. A368 (1979) 483.Google Scholar
  22. 22.
    R. J. Kent, K. E. Puttick and J. G. Rider, Plast. Rubber Proc. Appl. 1 (1981) 55.Google Scholar
  23. 23.
    N. J. Mills, J. Mater. Sci. 11 (1976) 363.Google Scholar
  24. 24.
    D. S. Dugdale and C. Ruiz, “Elasticity for Engineers” (McGraw-Hill Book Co., New York, 1971) p. 61.Google Scholar

Copyright information

© Chapman and Hall Ltd 1982

Authors and Affiliations

  • D. Kells
    • 1
  • N. J. Mills
    • 1
  1. 1.Department of Metallurgy and MaterialsUniversity of BirminghamBirminghamUK

Personalised recommendations