Advertisement

Journal of Materials Science

, Volume 16, Issue 11, pp 3141–3152 | Cite as

Low-temperature behaviour of epoxy-rubber particulate composites

  • S. C. Kunz
  • P. W. R. Beaumont
Papers

Abstract

Toughness and mechanical property data are presented for a carboxyl-terminated acrylonitrile butadiene (CTBN) rubber-modified epoxy resin in the temperature range 20 to − 110° C. A toughening model based on ultimate strain capability and tear energy dissipation of the rubber, present as dispersed microscopic particles in an epoxy matrix, is used to explain the suppression of composite toughness (G Ic ) below − 20° C. The toughness loss is attributed to a glass transition in the rubber particles, and to a secondary transition in the epoxy resin, both occurring in the range − 40 to − 80° C. Strain-tofailure and modulus measurements on bulk rubber-epoxy compounds, formulated to simulate rubber particle compositions, confirm a decrease in rubber ductility coincident with the onset of composite toughness loss. An increase in rubber tear energy associated with its transition to a rigid state can explain the observation that even at low temperatures composite toughness generally remains significantly higher than that of pure epoxy. Although the low-temperature epoxy transition reduces molecular mobility in the matrix phase, residual ductility in, and energy dissipation by, the rubber particles determine the extent of composite toughness suppression. The low-temperature data bear out the particle stretching-tearing model for toughening.

Keywords

Epoxy Butadiene Acrylonitrile Epoxy Matrix Rubber Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. J. McGarry, A. M. Willner and J. N. Sultan, “Toughening of Glassy Crosslinked Polymers with Elastomer Inclusions”, Research Report R69-59, Massachusetts Institute of Technology, USA (1969).Google Scholar
  2. 2.
    W. D. Bascom, R. L. Cottington, R. L. Jones and P. Peyser, J. Appl. Polymer Sci. 19 (1975) 2545.Google Scholar
  3. 3.
    J. M. Scott and D. C. Phillips, J. Mater. Sci. 10 (1975) 551.Google Scholar
  4. 4.
    R. Drake and A. Siebert, SAMPE Quarterly 6 (4) (1975).Google Scholar
  5. 5.
    C. B. Bucknall, “Toughened Plastics” (Applied Science, London, 1975).Google Scholar
  6. 6.
    S. Kunz-Douglass, P. W. R. Beaumont and M. F. Ashby, J. Mater. Sci. 15 (1980) 1109.Google Scholar
  7. 7.
    W. D. Bascom and R. L. Cottington, J. Adhesion 7 (1976) 333.Google Scholar
  8. 8.
    C. B. Bucknall and R. R. Smith, Polymer 6 (1965) 437.Google Scholar
  9. 9.
    S. Newman and S. Strella, J. Appl. Polymer Sci. 9 (1965) 2297.Google Scholar
  10. 10.
    C. B. Bucknall and T. Yoshii, Third International Conference on Deformation, Yield and Fracture of Polymers, PRI, Paper 13, Churchill College Cambridge, UK, March 1976.Google Scholar
  11. 11.
    B. F. Goodrich Chemical Co. “Hycar Reactive Liquid Polymers”, Internal Sales Service Report, December, London, UK (1972).Google Scholar
  12. 12.
    A. R. Siebert, C. K. Riew and E. H. Rowe, private communication (1976).Google Scholar
  13. 13.
    S. C. Kunz, PhD thesis, University of Cambridge (1978).Google Scholar
  14. 14.
    A. G. Evans, Int. J. Fract. 9 (1973) 267.Google Scholar
  15. 15.
    R. S. Rivlin and A. G. Thomas, J. Polymer Sci. 10 (1953) 291.Google Scholar
  16. 16.
    J. A. Sayre, Sandia National Laboratories, private communication (1980).Google Scholar
  17. 17.
    R. G. C. Arridge and J. H. Speake, Polymer 13 (1972) 443.Google Scholar
  18. 18.
    L. R. G. Treloar, “The Physics of Rubber Elasticity” (Oxford University Press, London, 1949).Google Scholar
  19. 19.
    N. K. Kalfoglou and H. L. Williams, J. Appl. Polymer Sci. 17 (1973) 1377.Google Scholar
  20. 20.
    L. E. Nielsen, “Mechanical Properties of Polymers” (Reinhold, New York, 1962).Google Scholar
  21. 21.
    L. Mullins, Trans. Inst. Rubber Ind. 35 (1959) 213.Google Scholar
  22. 22.
    A. N. Gent, “Fracture”, Vol. 7, edited by H. Liebowitz (Academic Press, New York, 1972) pp. 315–50.Google Scholar
  23. 23.
    R. H. Beck, S. Gratch, S. Newman and K. C. Rusch, Polymer Letters 6 (1968) 707.Google Scholar
  24. 24.
    J. A. Schmitt, J. Appl. Polymer Sci. 12 (1968) 533.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1981

Authors and Affiliations

  • S. C. Kunz
    • 1
  • P. W. R. Beaumont
    • 2
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA
  2. 2.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations