Journal of Materials Science

, Volume 16, Issue 11, pp 3087–3092 | Cite as

Ideal elastic, anelastic and viscoelastic deformation of a metallic glass

  • A. I. Taub
  • F. Spaepen


The elastic, viscoelastic and anelastic components of the homogeneous strain response of the metallic glass Pd82Si18 to an applied stress have been examined. The elastic response is fully reversible, instantaneous and linear. The measured elastic modulus, E, and temperature dependence, d(ln E)/dT, are 84±8 GPa and (−3.2±0.6) × 10−4 C−1, respectively. The viscoelastic flow is non-recoverable and, if the configuration remains constant, is characterized by a constant strain rate. This strain rate varies linearly with the stress, gtr, in the low stress regime (τ < 300 MPa), becoming non-linear for higher stresses. For isoconfigurational flow, the strain rate has an Arrhenius-type temperature dependence with an activation energy of - 200 ± 15 kJ mol−1, independent of stress and thermal history. The magnitude of the strain rate is strongly dependent on the degree of structural relaxation and therefore on thermal history. During isothermal annealing the viscoelastic strain rate varies inversely with time. The anelastic response is a transient that, at 500 K, contributes to the flow for approximately fifty hours after a stress increase and is fully recovered upon stress reduction. A spectrum of exponential decays is required to model this flow component. The anelastic strain, τA, varies linearly with the magnitude of the stress change, Δτ, over the entire stress range tested: γA/gDAτ=(8.0±0.8)× 10−6 MPa−1.


Metallic Glass Thermal History Stress Change Stress Range Structural Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. Nowick and B. S. Berry, “Anelastic Relaxation in Crystalline Solids” (Academic Press, New York, 1972).Google Scholar
  2. 2.
    H. S. Chen, Rep. Prog. Phys. 43 (1980) 353.Google Scholar
  3. 3.
    Idem, J. Appl. Phys. 49 (1978) 3289.Google Scholar
  4. 4.
    B. S. Berry, “Metallic Glasses” (American Society of Metals, Cleveland, Ohio, 1978) p. 161.Google Scholar
  5. 5.
    R. Maddin and T. Masumoto, Mater. Sci. Eng. 9 (1972) 153.Google Scholar
  6. 6.
    J. Logan and M. F. Ashby, Acta Met. 22 (1974) 1047.Google Scholar
  7. 7.
    T. Murata, H. Kimura and T. Masumoto, Scripta Met. 10 (1976) 705.Google Scholar
  8. 8.
    A. S. Argon and H. Y. Kuo, J. Non-Cryst. Solids 37 (1980) 241.Google Scholar
  9. 9.
    A. I. Taub and F. Spaepen, Scripta Met. 13 (1979) 195.Google Scholar
  10. 10.
    H. S. Chen and M. Goldstein, J. Appl. Phys. 43 (1971) 1642.Google Scholar
  11. 11.
    L. A. Davis, “Metallic Glasses” (American Society of Metals, Cleveland, Ohio, 1978) p. 190.Google Scholar
  12. 12.
    F. Spaepen, Acta Met. 25 (1977) 407.Google Scholar
  13. 13.
    A. S. Argon, ibid. 27 (1979) 47.Google Scholar
  14. 14.
    A. I. Taub and F. Spaepen, Scripta Met. 13 (1979) 883.Google Scholar
  15. 15.
    B. S. Berry and W. C. Pritchet, J. Appl. Phys. 44 (1973) 3122.Google Scholar
  16. 16.
    A. I. Taub, Acta Met. 28 (1980) 633.Google Scholar
  17. 17.
    A. I. Taub and F. Spaepen, ibid. 28 (1980) 1781.Google Scholar
  18. 18.
    P. M. Anderson III and A. E. Lord, Mater. Sci. Eng. 44 (1980) 279.Google Scholar
  19. 19.
    A. L. Greer, Thermochimica Acta 42 (1980) 193.Google Scholar
  20. 20.
    Idem, J. Non-Cryst. Solids 33 (1979) 291.Google Scholar
  21. 21.
    J. D. Ferry, “Viscoelastic Properties of Polymers” (John Wiley and Sons, New York, 1970).Google Scholar
  22. 22.
    C. Lanczos, “Applied Analysis” (Prentice-Hall, Englewood Cliffs, New Jersey, 1956) Chap. 4.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1981

Authors and Affiliations

  • A. I. Taub
    • 1
  • F. Spaepen
    • 2
  1. 1.Research and Development CenterGeneral Electric CompanySchenectady, New YorkUSA
  2. 2.Division of Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations