Skip to main content
Log in

Ideal elastic, anelastic and viscoelastic deformation of a metallic glass

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The elastic, viscoelastic and anelastic components of the homogeneous strain response of the metallic glass Pd82Si18 to an applied stress have been examined. The elastic response is fully reversible, instantaneous and linear. The measured elastic modulus, E, and temperature dependence, d(ln E)/dT, are 84±8 GPa and (−3.2±0.6) × 10−4 C−1, respectively. The viscoelastic flow is non-recoverable and, if the configuration remains constant, is characterized by a constant strain rate. This strain rate varies linearly with the stress, gtr, in the low stress regime (τ < 300 MPa), becoming non-linear for higher stresses. For isoconfigurational flow, the strain rate has an Arrhenius-type temperature dependence with an activation energy of - 200 ± 15 kJ mol−1, independent of stress and thermal history. The magnitude of the strain rate is strongly dependent on the degree of structural relaxation and therefore on thermal history. During isothermal annealing the viscoelastic strain rate varies inversely with time. The anelastic response is a transient that, at 500 K, contributes to the flow for approximately fifty hours after a stress increase and is fully recovered upon stress reduction. A spectrum of exponential decays is required to model this flow component. The anelastic strain, τ A, varies linearly with the magnitude of the stress change, Δτ, over the entire stress range tested: γ A/gDAτ=(8.0±0.8)× 10−6 MPa−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Nowick and B. S. Berry, “Anelastic Relaxation in Crystalline Solids” (Academic Press, New York, 1972).

    Google Scholar 

  2. H. S. Chen, Rep. Prog. Phys. 43 (1980) 353.

    Google Scholar 

  3. Idem, J. Appl. Phys. 49 (1978) 3289.

    Google Scholar 

  4. B. S. Berry, “Metallic Glasses” (American Society of Metals, Cleveland, Ohio, 1978) p. 161.

    Google Scholar 

  5. R. Maddin and T. Masumoto, Mater. Sci. Eng. 9 (1972) 153.

    Google Scholar 

  6. J. Logan and M. F. Ashby, Acta Met. 22 (1974) 1047.

    Google Scholar 

  7. T. Murata, H. Kimura and T. Masumoto, Scripta Met. 10 (1976) 705.

    Google Scholar 

  8. A. S. Argon and H. Y. Kuo, J. Non-Cryst. Solids 37 (1980) 241.

    Google Scholar 

  9. A. I. Taub and F. Spaepen, Scripta Met. 13 (1979) 195.

    Google Scholar 

  10. H. S. Chen and M. Goldstein, J. Appl. Phys. 43 (1971) 1642.

    Google Scholar 

  11. L. A. Davis, “Metallic Glasses” (American Society of Metals, Cleveland, Ohio, 1978) p. 190.

    Google Scholar 

  12. F. Spaepen, Acta Met. 25 (1977) 407.

    Google Scholar 

  13. A. S. Argon, ibid. 27 (1979) 47.

    Google Scholar 

  14. A. I. Taub and F. Spaepen, Scripta Met. 13 (1979) 883.

    Google Scholar 

  15. B. S. Berry and W. C. Pritchet, J. Appl. Phys. 44 (1973) 3122.

    Google Scholar 

  16. A. I. Taub, Acta Met. 28 (1980) 633.

    Google Scholar 

  17. A. I. Taub and F. Spaepen, ibid. 28 (1980) 1781.

    Google Scholar 

  18. P. M. Anderson III and A. E. Lord, Mater. Sci. Eng. 44 (1980) 279.

    Google Scholar 

  19. A. L. Greer, Thermochimica Acta 42 (1980) 193.

    Google Scholar 

  20. Idem, J. Non-Cryst. Solids 33 (1979) 291.

    Google Scholar 

  21. J. D. Ferry, “Viscoelastic Properties of Polymers” (John Wiley and Sons, New York, 1970).

    Google Scholar 

  22. C. Lanczos, “Applied Analysis” (Prentice-Hall, Englewood Cliffs, New Jersey, 1956) Chap. 4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taub, A.I., Spaepen, F. Ideal elastic, anelastic and viscoelastic deformation of a metallic glass. J Mater Sci 16, 3087–3092 (1981). https://doi.org/10.1007/BF00540316

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540316

Keywords

Navigation