The Italian Journal of Neurological Sciences

, Volume 19, Supplement 6, pp S399–S402 | Cite as

Contribution of magnetic resonance imaging techniques in understanding cognitive impairment in multiple sclerosis

  • M. Filippi
Cognitive Dysfunction In MS

Abstract

In this review, the results of recent quantitative magnetic resonance imaging (MRI) studies correlating the degree of cognitive impairment in multiple sclerosis patients with the extent and severity of brain abnormalities seen using MRI techniques are presented and discussed with the ultimate goal of a better understanding of the pathophysiological mechanisms underlying the development of such deficits.

Key words

Multiple sclerosis Magnetic resonance imaging Cognitive functions Magnetization transfer imaging Frontal lobe 

Sommario

In questa revisione della letteratura, vengono presentati e discussi i risultati di recenti studi di risonanza magnetica (RM) quantitativa nei quali il grado di deficit cognitivo in pazienti affetti da sclerosi multipla e stato correlato con l'estensione e la gravity delle alterazioni encefaliche evidenziate con tecniche differenti di RM, al fine di raggiungere una migliore comprensione dei meccanismi patogenetici sottesi allo sviluppo di tall deficit.

References

  1. 1.
    Khoury SJ, Guttmann CRG, Orav EJ et al (1994) Longitudinal MRI in multiple sclerosis: Correlation between disability and lesion burden. Neurology 44:2120–2124Google Scholar
  2. 2.
    Gass A, Barker GJ, Kidd D et al (1994) Correlation of magnetization transfer ratio with disability in multiple sclerosis. Ann Neurol 36:62–67Google Scholar
  3. 3.
    van Walderveen MAA, Barkhof F, Hommes OR et al (1995) Correlating MRI and clinical disease activity in multiple sclerosis: Relevance of hypointense lesions on short TR/short TE (T1-weighted) spin-echo images. Neurology 45:1684–1690Google Scholar
  4. 4.
    The IFNB Multiple Sclerosis Study Group, the University of British Columbia MS/MRI Analysis Group (1995) Interferon beta-lb in the treatment of multiple sclerosis: Final outcome of the randomized controlled trial. Neurology 45:1277–1285Google Scholar
  5. 5.
    Filippi M, Horsfield MA, Tofts PS et al (1995) Quantitative assessment of MRI lesion load in monitoring the evolution of multiple sclerosis. Brain 118:1601–1612Google Scholar
  6. 6.
    Miller DH, Albert PS, Barkhof F et al (1996) Guidelines for the use of magnetic resonance techniques in monitoring the treatment of multiple sclerosis. Ann Neurol 39:6–16Google Scholar
  7. 7.
    Truyen L, van Waesberghe JHTM, van Walderveen MAA et al (1997) Accumulation of hypointense lesions (“black holes”) on TI spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 47:1469–1476Google Scholar
  8. 8.
    Filippi M, Miller DH (1996) MRI in the differential diagnosis and monitoring the treatment of multiple sclerosis. Curt Opin Neurol 9:178–186Google Scholar
  9. 9.
    Kurtzke JF (1983) Rating neurological impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 33:1444–1452Google Scholar
  10. 10.
    Rao SM, Leo GJ, Bernardin L, Unverzagt F (1991) Cognitive dysfunction in multiple sclerosis: Frequency, patterns and prediction. Neurology 41:685–691Google Scholar
  11. 11.
    Ron MA, Callanan MM, Warrington EK (1991) Cognitive abnormalities in multiple sclerosis: A psychometric and MRI study. Psychol Med 21:59–68Google Scholar
  12. 12.
    Arnett PA, Rao SM, Bernardin L et al (1994) Relationship between frontal lobe lesions and Wisconsin card sorting test performance in patients with multiple sclerosis. Neurology 44:420–425Google Scholar
  13. 13.
    Foong J, Rozewicz L, Quaghebeur G et al (1997) Executive functions in multiple sclerosis. The role of frontal lobe pathology. Brain 120:15–26Google Scholar
  14. 14.
    Rao SM, Leo GJ, Haughton VM et al (1989) Correlation of magnetic resonance imaging with neuropsychological testing in multiple sclerosis. Neurology 39:161–166Google Scholar
  15. 15.
    Swirsky-Sacchetti T, Mitchell DR, Seward J et al (1992) Neuropsychological and structural brain lesions in multiple sclerosis: A regional analysis. Neurology 42:291–1295Google Scholar
  16. 16.
    Paulesu A, Perani D, Fazio F et al (1996) Functional basis of memory impairment in multiple sclerosis: A [18F]FDG PET study. Neuroimage 4:87–96Google Scholar
  17. 17.
    Rovaris M, Filippi M, Falautano M et al (1998) Relation between MR abnormalities and patterns of cognitive impairment in multiple sclerosis. Neurology 50:1601–1608Google Scholar
  18. 18.
    Miki Y, Grossman RI, Udupa JK et al (1998) Isolated U-fiber involvement in MS. Preliminary observations. Neurology 50:1301–1306Google Scholar
  19. 19.
    McDonald WI, Miller DH, Barnes D (1992) The pathological evolution of multiple sclerosis. Neuropathol Appl Neurobiol 18:319–334Google Scholar
  20. 20.
    Lucchinetti CF, Bruck W, Rodriguez M, Lassmann H (1996) Distinct patterns of multiple sclerosis pathology indicates heterogeneity in pathogenesis. Brain Pathol 6:259–274Google Scholar
  21. 21.
    Bruck W, Bitsch A, Kolenda H et al (1997) Inflammatory central nervous system demyelination: Correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42:783–793Google Scholar
  22. 22.
    Trapp BD, Peterson J, Ransohoff RM et al (1998) Axonal transection in the lesions of multiple sclerosis. N Eng J Med 338:278–285Google Scholar
  23. 23.
    Barbosa S, Blumhardt LD, Roberts N et al (1994) Magnetic resonance relaxation time mapping in multiple sclerosis: Normal appearing white matter and the ‘invisible’ lesion load. Magn Reson Imaging 12:33–42Google Scholar
  24. 24.
    Filippi M, Campi A, Dousset V et al (1995) A magnetization transfer imaging study of normal-appearing white matter in multiple sclerosis. Neurology 45:478–482Google Scholar
  25. 25.
    Loevner LA, Grossman RI, Cohen JA et al (1995) Microscopic disease in normal-appearing white matter on conventional MR images in patients with multiple sclerosis: Assessment with magnetization-transfer measurements. Radiology 96:511–515Google Scholar
  26. 26.
    Narayanan S, Fu L, Pioro E et al (1997) Imaging of axonal damage in multiple sclerosis: Spatial distribution of magnetic resonance imaging lesions. Ann Neurol 41:385–391Google Scholar
  27. 27.
    Fu L, Matthews PM, De Stefano N et al (1998) Imaging of axonal damage of normal appearing white matter in multiple sclerosis. Brain 121:103–113Google Scholar
  28. 28.
    van Walderveen MAA, Kamphorst W, Scheltens P et al (1998) Histopathologic correlate of hypointense lesions on (T1-weighted) spin-echo MRI in multiple sclerosis. Neurology 50:1282–1288Google Scholar
  29. 29.
    Grossman RI (1994) Magnetization transfer in multiple sclerosis. Ann Neurol 36:S97-S99Google Scholar
  30. 30.
    van Buchem MA, McGowan JC, Kolson DL et al (1996) Quantitative volumetric magnetization transfer analysis in multiple sclerosis: Estimation of macroscopic and microscopic disease burden. Magn Reson Med 36:632–636Google Scholar
  31. 31.
    van Buchem MA, Grossman RI, Armstrong C et al (1998) Correlation of volumetric magnetization transfer imaging with clinical data in MS. Neurology 50:1609–1617Google Scholar
  32. 32.
    Filippi M, Yousry T, Baratti C et al (1996) Quantitative assessment of MRI lesion load in multiple sclerosis. A comparison of conventional spin-echo with fast fluid-attenuated inversion recovery. Brain 119:1349–1355Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • M. Filippi
    • 1
  1. 1.Neuroimaging Research Unit Department of Neuroscience Scientific Institute Ospedale San RaffaeleUniversity of MilanoMilanoItaly

Personalised recommendations