Advertisement

Parasitology Research

, Volume 74, Issue 3, pp 255–261 | Cite as

Development of the protonephridia of Austramphilina elongata

  • K. Rohde
  • N. Watson
Original Investigations

Abstract

In embryos of Austramphilina elongata, ciliary tufts (flames) of three terminal cells are enclosed by cytoplasmic cylinders of a single, proximal canal cell. The cylinders are joined to form a single capillary, connected to the capillary of the distal canal cell by a desmosome. Internal outgrowths of the terminal cells grow into the space between the cylinders and the outermost cilia. During development, more cilia are formed, the parts of the cylinders closest to the terminal cells bulge out to accommodate the additional cilia, and at points of contact between the inner outgrowths and the cylinders external ribs are formed, connected to the internal ribs formed from the inner outgrowths by means of thin, cytoplasmic sheaths (“membranes”). During development and in fully developed protonephridia, the cytoplasmic cylinders are connected to the terminal cells by desmosomes but do not fuse with them.

Keywords

Terminal Cell Internal Outgrowth Canal Cell Single Capillary Ciliary Tuft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ax P (1984) Das phylogenetische System. Gustav Fischer, Stuttgart New YorkGoogle Scholar
  2. Brandenburg J (1974) The morphology of protonephridia. Fortschr Zool 23:1–15Google Scholar
  3. Clement P, Fournier A (1981) Un appareil excréteur primitif: les protonéphridies (Plathelminthes et Némathelminthes). Bull Soc Zool Fr 106:55–67Google Scholar
  4. Coil WH (1984) SEM of tapeworm flame cells. Proc Helminthol Soc Wash 51:174–175Google Scholar
  5. Ehlers U (1984) Phylogenetisches System der Plathelminthes. Verh Naturwiss Ver Hamburg (N.F.) 27:291–294Google Scholar
  6. Ehlers U (1985a) Das phylogenetische System der Plathelminthes. Gustav Fischer, Stuttgart New YorkGoogle Scholar
  7. Ehlers U (1985b) Phylogenetic relationships within the Platyhelminthes. In: Conway Morris S, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. Oxford University Press, Oxford, pp 143–158Google Scholar
  8. Ehlers U (1986) Comments on a phylogenetic system of the Platyhelminthes. Hydrobiologia 132:1–12Google Scholar
  9. Ehlers U, Sopott-Ehlers B (1986) Vergleichende Ultrastruktur von Protonephridien: ein Beitrag zur Stammesgeschichte der Plathelminthen. Verh Dtsch Zool Ges 79:168–169Google Scholar
  10. Erasmus DA (1967) Ultrastructural observations on the reserve bladder system of Cyathocotyle bushensis Khan, 1962 (Trematoda: Strigeoidea) with special reference to lipid excretion, J Parasitol 53:525–536Google Scholar
  11. Howells RE (1969) Observations on the nephridial system of the cestode Moniezia expansa (Rud., 1805). Parasitology 59:449–459Google Scholar
  12. Kümmel G (1958) Das Terminalorgan der Protonephridien, Feinstruktur und Deutung der Funktion. Z Naturforsch 13b:677–679Google Scholar
  13. Kümmel G (1959) Feinstruktur der Wimperflamme in den Protonephridien. Protoplasma 51:371–376Google Scholar
  14. Lüdtke H (1963) Praktikum der vergleichenden Zoohistologie. VEB Gustav Fischer, JenaGoogle Scholar
  15. Nieland ML, Weinbach EC (1968) The bladder of Cysticercus fasciolaris: electron microscopy and carbohydrate content. Parasitology 58:489–496Google Scholar
  16. Pan SC-T (1980) The fine structure of the miracidium of Schistosoma mansoni. J Invertebr Pathol 36:307–372Google Scholar
  17. Rohde K (1971a) Untersuchungen an Multicotyle purvisi Dawes 1941 (Trematoda: Aspidogastrea). VII. Elektronenmikroskopischer Bau des Exkretionssystems. Int J Parasitol 1:275–286Google Scholar
  18. Rohde K (1971b) Phylogenetic origin of trematodes. Parasitol Schriftenr 21:17–27Google Scholar
  19. Rohde K (1972) The Aspidogastrea, especially Multicotyle purvisi Dawes, 1941, Adv Parasitol 10:77–151Google Scholar
  20. Rohde K (1973) Ultrastructure of the protonephridial system of Polystomoides malayi Rohde and P. renschi Rohde (Monogenea: Polystomatidae). Int J Parasitol 3:329–333Google Scholar
  21. Rohde K (1980) Some aspects of the ultrastructure of Gotocotyla secunda (Tripathi 1954) (Monogenea: Gotocotylidae) and Hexostoma euthynni Meserve, 1938 (Monogenea: Hexostomatidae). Angew Parasitol 21:32–48Google Scholar
  22. Rohde K (1982) The flame cells of a monogenean and an aspidogastrean, not composed of two interdigitating cells. Zool Anz 209:311–314Google Scholar
  23. Rohde K (1986) Ultrastructure of the flame cells and protonephridial capillaries of Temnocephala: implications for the phylogeny of parasitic Platyhelminthes. Zool Anz 216:39–47Google Scholar
  24. Rohde K (1987) Ultrastructure of flame cells and protonephridial capillaries of Craspedetla and Didymorchis (Plathelminthes, Rhabdocoela). Zoomorph 106:346–351Google Scholar
  25. Rohde K (1988) Phylogenetic relationship of free-living and parasitic Platyhelminthes on the basis of ultrastructural evidence. Fortschr Zool (in press)Google Scholar
  26. Rohde K, Georgi M (1983) Structure and development of Austramphilina elongata Johnston, 1931 (Cestodaria: Amphilinidea). Int J Parasitol 13:273–287Google Scholar
  27. Rohde K, Watson N (1986) Ultrastructure of spermatogenesis and sperm of Austramphilina elongata (Platyhelminthes, Amphilinidea). J Submicrosc Cytol 18:361–374Google Scholar
  28. Rohde K, Watson N (1987) Ultrastructure of the protonephridial system of larval Austramphilina elongata (Platyhelminthes, Amphilinidea). J Submicrosc Cytol 19:113–118Google Scholar
  29. Sakamoto T, Sugimura M (1969) Studies on echinococcosis XXI. Electron microscopical observations on general structure of larval tissue of multilocular Echinococcus. Jpn J Vet Res 17:67–80Google Scholar
  30. Swiderski Z, Euzet L, Schönenberger N (1975) Ultrastructures du système nephridien des cestodes cyclophyllides Catenotaenia pusilla (Goeze, 1782), Hymenolepis diminuta (Rudolphi, 1819) et Inermicapsifer madagascariensis (Davaine, 1870), Baer, 1956. La Cellule 71:7–18Google Scholar
  31. Wilson RA (1969) The fine structure of the protonephridial system in the miracidium of Fasciola hepatica. Parasitology 59:461–467Google Scholar
  32. Xylander W (1986) Zur Biologie und Ultrastruktur der Gyrocotylida und Amphilinida sowie ihre Stellung im phylogenetischen System der Plathelminthes. Ph.D. Dissertation, GöttingenGoogle Scholar
  33. Xylander W (1987a) Ultrastructure of the lycophora larva of Gyrocotyle urna (Cestoda, Gyrocotylidea). III. The protonephridial system. Zoomorph 107:88–95Google Scholar
  34. Xylander W (1987b) Das Protonephridialsystem der Cestoda: Evolutive VerÄnderungen und ihre mögliche funktionelle Bedeutung. Verh Dtsch Zool Ges 80 (in press)Google Scholar
  35. Yamane Y (1968) On the fine structure of Diphyllobothrium erinacei with special reference to the tegument. Yonago Acta Med 12:169–181Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • K. Rohde
    • 1
  • N. Watson
    • 1
  1. 1.Department of ZoologyUniversity of New EnglandArmidaleAustralia

Personalised recommendations