Advertisement

Chemistry of Heterocyclic Compounds

, Volume 15, Issue 6, pp 664–670 | Cite as

Unsaturated hydantoin derivatives. 19. Effect of temperature on the rate of alkaline hydrolysis of 2-thioxo-5-arylidenehydantoins and some of their derivatives

  • B. A. Ivin
  • T. N. Rusavskaya
  • A. I. D'yachkov
  • G. V. Rutkovskii
Article

Abstract

The effect of temperature on the rate of alkaline hydrolysis of the monoanions of 2-thioxo-5-arylidenehydantoins was studied. The investigated series obeys an isokinetic law with isokinetic temperature β=321±10°K. The kinetic data obtained constitute evidence that the mechanisms of the hydrolysis of 2-thioxo-5-arylidenehydantoins and their oxygen analogs are identical. A change in the solvation of the starting and transition states is the principal reason for the change in the reactivities of 5-arylidene-2-thioxohydantoins under the influence of the substituent and the temperature as compared with 5-arylidenehydantoins, the N- and Smethyl derivatives, and 4-thioxo-5-benzylidenehydantoin.

Keywords

Oxygen Hydrolysis Organic Chemistry Transition State Kinetic Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    B. A. Ivin, T. N. Rusavskaya, A. I. D'yachkov, G. V. Rutkovskii, and Yu. A. Ignat'ev, Khim. Geterotsikl. Soedin., No. 3, 406 (1979).Google Scholar
  2. 2.
    B. A. Ivin, T. N. Rusavskaya, G. V. Rutkovskii, and E. G. Sochilin, Zh. Org. Khim., 13, 1970 (1977).Google Scholar
  3. 3.
    B. A. Ivin, G. V. Rutkovskii, T. N. Rusavskaya, and E. G. Sochilin, Reakts. Sposobn. Org. Soedin., 13, 41 (1976).Google Scholar
  4. 4.
    R. J. E. Talbot, in: Comprehensive Chemical Kinetics, Vol. 10, Elsevier Science (1972).Google Scholar
  5. 5.
    S. T. Edward, in: Organic Sulfur Compounds, Vol. 2 (1969), p. 287.Google Scholar
  6. 6.
    B. A. Ivin, G. V. Rutkovskii, N. A. Smorygo, A. I. D'yachkov, G. M. Frolova, and E. G. Sochilin, Zh. Org. Khim., 11, 2405 (1975).Google Scholar
  7. 7.
    B. A. Ivin, A. I. D'yachkov, I. M. Vishnyakov, and E. G. Sochilin, Zh. Org. Khim., 11, 1550 (1975).Google Scholar
  8. 8.
    O. Exner, in: Advances in Linear Free Energy Relationships (1972), p. 49.Google Scholar
  9. 9.
    O. Exner, in: Progress in Physical Organic Chemistry, Vol. 10 (1973), p. 411.Google Scholar
  10. 10.
    V. A. Pal'm, Principles of the Quantitative Theory of Organic Reactions [in Russian], Khimiya, Leningrad (1977), p. 260.Google Scholar
  11. 11.
    V. A. Pal'm, Principles of the Quantitative Theory of Organic Reactions [in Russian], Khimiya, Leningrad (1969), p. 281.Google Scholar
  12. 12.
    B. A. Ivin, T. N. Rusavskaya, G. V. Rutkovskii, and E. G. Sochilin, Zh. Org. Khim., 11, 2188 (1974).Google Scholar
  13. 13.
    D. T. Elmore, J. K. Ogle, and P. A. Toseland, J. Chem. Soc., Nos. 1–2, 192 (1956).Google Scholar
  14. 14.
    J. R. Johnson and J. B. Buchanan, J. Am. Chem. Soc., 73, 3749 (1951).Google Scholar
  15. 15.
    V. F. Krivtsov and V. M. Stepanov, Zh. Obshch. Khim., 35, 53, 556 (1965).Google Scholar
  16. 16.
    V. N. Nicolet and E. D. Campbell, J. Am. Chem. Soc., 50, 1155 (1928).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • B. A. Ivin
    • 1
  • T. N. Rusavskaya
    • 1
  • A. I. D'yachkov
    • 1
  • G. V. Rutkovskii
    • 1
  1. 1.N. N. Petrov Scientific-Research Institute of OncologyMinistry of Public Health of the USSRLeningrad

Personalised recommendations